BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 20495007)

  • 1. The extracellular K+ concentration dependence of outward currents through Kir2.1 channels is regulated by extracellular Na+ and Ca2+.
    Chang HK; Lee JR; Liu TA; Suen CS; Arreola J; Shieh RC
    J Biol Chem; 2010 Jul; 285(30):23115-25. PubMed ID: 20495007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique Kir2.x properties determine regional and species differences in the cardiac inward rectifier K+ current.
    Dhamoon AS; Pandit SV; Sarmast F; Parisian KR; Guha P; Li Y; Bagwe S; Taffet SM; Anumonwo JM
    Circ Res; 2004 May; 94(10):1332-9. PubMed ID: 15087421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. External K
    Ishihara K
    J Gen Physiol; 2018 Jul; 150(7):977-989. PubMed ID: 29907600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular K+ elevates outward currents through Kir2.1 channels by increasing single-channel conductance.
    Liu TA; Chang HK; Shieh RC
    Biochim Biophys Acta; 2011 Jun; 1808(6):1772-8. PubMed ID: 21376013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. T-tubule localization of the inward-rectifier K(+) channel in mouse ventricular myocytes: a role in K(+) accumulation.
    Clark RB; Tremblay A; Melnyk P; Allen BG; Giles WR; Fiset C
    J Physiol; 2001 Dec; 537(Pt 3):979-92. PubMed ID: 11744770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a site involved in the block by extracellular Mg(2+) and Ba(2+) as well as permeation of K(+) in the Kir2.1 K(+) channel.
    Murata Y; Fujiwara Y; Kubo Y
    J Physiol; 2002 Nov; 544(3):665-77. PubMed ID: 12411513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of transient Na+ conductance by intra- and extracellular K+ in the human delayed rectifier K+ channel Kv1.5.
    Wang Z; Zhang X; Fedida D
    J Physiol; 2000 Mar; 523 Pt 3(Pt 3):575-91. PubMed ID: 10718739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two modes of polyamine block regulating the cardiac inward rectifier K+ current IK1 as revealed by a study of the Kir2.1 channel expressed in a human cell line.
    Ishihara K; Ehara T
    J Physiol; 2004 Apr; 556(Pt 1):61-78. PubMed ID: 14724206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The consequences of disrupting cardiac inwardly rectifying K(+) current (I(K1)) as revealed by the targeted deletion of the murine Kir2.1 and Kir2.2 genes.
    Zaritsky JJ; Redell JB; Tempel BL; Schwarz TL
    J Physiol; 2001 Jun; 533(Pt 3):697-710. PubMed ID: 11410627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage-dependent inhibition of outward Kir2.1 currents by extracellular spermine.
    Chang HK; Shieh RC
    Biochim Biophys Acta; 2013 Feb; 1828(2):765-75. PubMed ID: 22948070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of Kir1.1 inactivation by extracellular Ca and Mg.
    Sackin H; Nanazashvili M; Li H; Palmer LG; Yang L
    Biophys J; 2011 Mar; 100(5):1207-15. PubMed ID: 21354393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conduction through the inward rectifier potassium channel, Kir2.1, is increased by negatively charged extracellular residues.
    D'Avanzo N; Cho HC; Tolokh I; Pekhletski R; Tolokh I; Gray C; Goldman S; Backx PH
    J Gen Physiol; 2005 May; 125(5):493-503. PubMed ID: 15824191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different intracellular polyamine concentrations underlie the difference in the inward rectifier K(+) currents in atria and ventricles of the guinea-pig heart.
    Yan DH; Nishimura K; Yoshida K; Nakahira K; Ehara T; Igarashi K; Ishihara K
    J Physiol; 2005 Mar; 563(Pt 3):713-24. PubMed ID: 15668212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of outward Na(+)-Ca2+ exchange current in guinea-pig ventricular myocytes.
    Matsuoka S; Hilgemann DW
    J Physiol; 1994 May; 476(3):443-58. PubMed ID: 7520059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-affinity spermine block mediating outward currents through Kir2.1 and Kir2.2 inward rectifier potassium channels.
    Ishihara K; Yan DH
    J Physiol; 2007 Sep; 583(Pt 3):891-908. PubMed ID: 17640933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium permeability and sensitivity induced by mutations in the selectivity filter of the KcsA channel towards Kir channels.
    Raja M; Vales E
    Biochimie; 2010 Mar; 92(3):232-44. PubMed ID: 19962419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of Ca(2+)-dependent inwardly rectifying K+ currents in HeLa cells.
    DĂ­az M; SepĂșlveda FV
    Pflugers Arch; 1995 Jun; 430(2):168-80. PubMed ID: 7545810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monensin-Induced Increase in Intracellular Na+ Induces Changes in Na+ and Ca2+ Currents and Regulates Na+-K+ and Na+-Ca2+ Transport in Cardiomyocytes.
    Tsuchida K; Hirose H; Ozawa S; Ishida H; Iwatani T; Matsumoto U
    Pharmacology; 2021; 106(1-2):91-105. PubMed ID: 33113543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular Na(+) modulates large conductance Ca(2+)-activated K (+) currents in human umbilical vein endothelial cells.
    Liang GH; Kim MY; Park S; Kim JA; Choi S; Suh SH
    Pflugers Arch; 2008 Oct; 457(1):67-75. PubMed ID: 18365244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical characterization of inwardly rectifying potassium currents (I(K1) I(K,ACh), I(K,Ca)) using sinus rhythm or atrial fibrillation action potential waveforms.
    Tang C; Skibsbye L; Yuan L; Bentzen BH; Jespersen T
    Gen Physiol Biophys; 2015 Oct; 34(4):383-92. PubMed ID: 26001288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.