These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
374 related articles for article (PubMed ID: 20495137)
1. Microinjection of propofol into the perifornical area induces sedation with decreasing cortical acetylcholine release in rats. Gamou S; Fukuda S; Ogura M; Sakamoto H; Morita S Anesth Analg; 2010 Aug; 111(2):395-402. PubMed ID: 20495137 [TBL] [Abstract][Full Text] [Related]
2. Clonidine induces sedation through acting on the perifornical area and the locus coeruleus in rats. Sakamoto H; Fukuda S; Minakawa Y; Sawamura S J Neurosurg Anesthesiol; 2013 Oct; 25(4):399-407. PubMed ID: 24004980 [TBL] [Abstract][Full Text] [Related]
3. Differential control of cortical activity by the basal forebrain in rats: a role for both cholinergic and inhibitory influences. Jiménez-Capdeville ME; Dykes RW; Myasnikov AA J Comp Neurol; 1997 Apr; 381(1):53-67. PubMed ID: 9087419 [TBL] [Abstract][Full Text] [Related]
4. Involvement of the basal cholinergic forebrain in the mediation of general (propofol) anesthesia. Laalou FZ; de Vasconcelos AP; Oberling P; Jeltsch H; Cassel JC; Pain L Anesthesiology; 2008 May; 108(5):888-96. PubMed ID: 18431125 [TBL] [Abstract][Full Text] [Related]
5. Basal forebrain glutamatergic modulation of cortical acetylcholine release. Fadel J; Sarter M; Bruno JP Synapse; 2001 Mar; 39(3):201-12. PubMed ID: 11169769 [TBL] [Abstract][Full Text] [Related]
6. Glutamate receptors in nucleus accumbens mediate regionally selective increases in cortical acetylcholine release. Zmarowski A; Sarter M; Bruno JP Synapse; 2007 Mar; 61(3):115-23. PubMed ID: 17146770 [TBL] [Abstract][Full Text] [Related]
7. Cholinergic modulation of slow cortical rhythm in urethane-anesthetized rats. Toth A; Hajnik T; Detari L Brain Res Bull; 2012 Jan; 87(1):117-29. PubMed ID: 22033501 [TBL] [Abstract][Full Text] [Related]
8. Orexins increase cortical acetylcholine release and electroencephalographic activation through orexin-1 receptor in the rat basal forebrain during isoflurane anesthesia. Dong HL; Fukuda S; Murata E; Zhu Z; Higuchi T Anesthesiology; 2006 May; 104(5):1023-32. PubMed ID: 16645455 [TBL] [Abstract][Full Text] [Related]
9. Inactivation of prefrontal cortex abolishes cortical acetylcholine release evoked by sensory or sensory pathway stimulation in the rat. Rasmusson DD; Smith SA; Semba K Neuroscience; 2007 Oct; 149(1):232-41. PubMed ID: 17850979 [TBL] [Abstract][Full Text] [Related]
10. Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat. Alkire MT; McReynolds JR; Hahn EL; Trivedi AN Anesthesiology; 2007 Aug; 107(2):264-72. PubMed ID: 17667571 [TBL] [Abstract][Full Text] [Related]
11. Sensitization of cortical acetylcholine release by repeated administration of nicotine in rats. Arnold HM; Nelson CL; Sarter M; Bruno JP Psychopharmacology (Berl); 2003 Feb; 165(4):346-58. PubMed ID: 12454730 [TBL] [Abstract][Full Text] [Related]
12. Differential effects of the neuropeptide galanin on striatal acetylcholine release in anaesthetized and awake rats. Antoniou K; Kehr J; Snitt K; Ogren SO Br J Pharmacol; 1997 Jul; 121(6):1180-6. PubMed ID: 9249255 [TBL] [Abstract][Full Text] [Related]
13. Differential modulation of frontal cortex acetylcholine by injection of substance P into the nucleus basalis magnocellularis region in the freely-moving vs. the anesthetized preparation. De Souza Silva MA; Hasenöhrl RU; Tomaz C; Schwarting RK; Huston JP Synapse; 2000 Dec; 38(3):243-53. PubMed ID: 11020227 [TBL] [Abstract][Full Text] [Related]
14. Supraspinal anesthesia: behavioral and electroencephalographic effects of intracerebroventricularly infused pentobarbital, propofol, fentanyl, and midazolam. Jugovac I; Imas O; Hudetz AG Anesthesiology; 2006 Oct; 105(4):764-78. PubMed ID: 17006076 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of acetaldehyde metabolism decreases acetylcholine release in medial frontal cortex of freely moving rats. Jamal M; Ameno K; Wang W; Kumihashi M; Ameno S; Ikuo U; Shinji A; Ijiri I Brain Res; 2005 Mar; 1039(1-2):90-6. PubMed ID: 15781050 [TBL] [Abstract][Full Text] [Related]
16. Modulation of ventral pallidal dopamine and glutamate release by the intravenous anesthetic propofol studied by in vivo microdialysis. Grasshoff C; Herrera-Marschitz M; Goiny M; Kretschmer BD Amino Acids; 2005 Mar; 28(2):145-8. PubMed ID: 15714256 [TBL] [Abstract][Full Text] [Related]
17. Thalamic regulation of striatal acetylcholine efflux is both direct and indirect and qualitatively altered in the dopamine-depleted striatum. Zackheim J; Abercrombie ED Neuroscience; 2005; 131(2):423-36. PubMed ID: 15708484 [TBL] [Abstract][Full Text] [Related]
18. Stimulation of cortical acetylcholine release by orexin A. Fadel J; Pasumarthi R; Reznikov LR Neuroscience; 2005; 130(2):541-7. PubMed ID: 15664710 [TBL] [Abstract][Full Text] [Related]
19. The effect of interruption to propofol sedation on auditory event-related potentials and electroencephalogram in intensive care patients. Yppärilä H; Nunes S; Korhonen I; Partanen J; Ruokonen E Crit Care; 2004 Dec; 8(6):R483-90. PubMed ID: 15566595 [TBL] [Abstract][Full Text] [Related]
20. Effects of MF-268, a new cholinesterase inhibitor, on acetylcholine and biogenic amines in rat cortex. Zhu XD; Cuadra G; Brufani M; Maggi T; Pagella PG; Williams E; Giacobini E J Neurosci Res; 1996 Jan; 43(1):120-6. PubMed ID: 8838583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]