BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 20495137)

  • 1. Microinjection of propofol into the perifornical area induces sedation with decreasing cortical acetylcholine release in rats.
    Gamou S; Fukuda S; Ogura M; Sakamoto H; Morita S
    Anesth Analg; 2010 Aug; 111(2):395-402. PubMed ID: 20495137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clonidine induces sedation through acting on the perifornical area and the locus coeruleus in rats.
    Sakamoto H; Fukuda S; Minakawa Y; Sawamura S
    J Neurosurg Anesthesiol; 2013 Oct; 25(4):399-407. PubMed ID: 24004980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential control of cortical activity by the basal forebrain in rats: a role for both cholinergic and inhibitory influences.
    Jiménez-Capdeville ME; Dykes RW; Myasnikov AA
    J Comp Neurol; 1997 Apr; 381(1):53-67. PubMed ID: 9087419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of the basal cholinergic forebrain in the mediation of general (propofol) anesthesia.
    Laalou FZ; de Vasconcelos AP; Oberling P; Jeltsch H; Cassel JC; Pain L
    Anesthesiology; 2008 May; 108(5):888-96. PubMed ID: 18431125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basal forebrain glutamatergic modulation of cortical acetylcholine release.
    Fadel J; Sarter M; Bruno JP
    Synapse; 2001 Mar; 39(3):201-12. PubMed ID: 11169769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamate receptors in nucleus accumbens mediate regionally selective increases in cortical acetylcholine release.
    Zmarowski A; Sarter M; Bruno JP
    Synapse; 2007 Mar; 61(3):115-23. PubMed ID: 17146770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholinergic modulation of slow cortical rhythm in urethane-anesthetized rats.
    Toth A; Hajnik T; Detari L
    Brain Res Bull; 2012 Jan; 87(1):117-29. PubMed ID: 22033501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orexins increase cortical acetylcholine release and electroencephalographic activation through orexin-1 receptor in the rat basal forebrain during isoflurane anesthesia.
    Dong HL; Fukuda S; Murata E; Zhu Z; Higuchi T
    Anesthesiology; 2006 May; 104(5):1023-32. PubMed ID: 16645455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of prefrontal cortex abolishes cortical acetylcholine release evoked by sensory or sensory pathway stimulation in the rat.
    Rasmusson DD; Smith SA; Semba K
    Neuroscience; 2007 Oct; 149(1):232-41. PubMed ID: 17850979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat.
    Alkire MT; McReynolds JR; Hahn EL; Trivedi AN
    Anesthesiology; 2007 Aug; 107(2):264-72. PubMed ID: 17667571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitization of cortical acetylcholine release by repeated administration of nicotine in rats.
    Arnold HM; Nelson CL; Sarter M; Bruno JP
    Psychopharmacology (Berl); 2003 Feb; 165(4):346-58. PubMed ID: 12454730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of the neuropeptide galanin on striatal acetylcholine release in anaesthetized and awake rats.
    Antoniou K; Kehr J; Snitt K; Ogren SO
    Br J Pharmacol; 1997 Jul; 121(6):1180-6. PubMed ID: 9249255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential modulation of frontal cortex acetylcholine by injection of substance P into the nucleus basalis magnocellularis region in the freely-moving vs. the anesthetized preparation.
    De Souza Silva MA; Hasenöhrl RU; Tomaz C; Schwarting RK; Huston JP
    Synapse; 2000 Dec; 38(3):243-53. PubMed ID: 11020227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supraspinal anesthesia: behavioral and electroencephalographic effects of intracerebroventricularly infused pentobarbital, propofol, fentanyl, and midazolam.
    Jugovac I; Imas O; Hudetz AG
    Anesthesiology; 2006 Oct; 105(4):764-78. PubMed ID: 17006076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of acetaldehyde metabolism decreases acetylcholine release in medial frontal cortex of freely moving rats.
    Jamal M; Ameno K; Wang W; Kumihashi M; Ameno S; Ikuo U; Shinji A; Ijiri I
    Brain Res; 2005 Mar; 1039(1-2):90-6. PubMed ID: 15781050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of ventral pallidal dopamine and glutamate release by the intravenous anesthetic propofol studied by in vivo microdialysis.
    Grasshoff C; Herrera-Marschitz M; Goiny M; Kretschmer BD
    Amino Acids; 2005 Mar; 28(2):145-8. PubMed ID: 15714256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thalamic regulation of striatal acetylcholine efflux is both direct and indirect and qualitatively altered in the dopamine-depleted striatum.
    Zackheim J; Abercrombie ED
    Neuroscience; 2005; 131(2):423-36. PubMed ID: 15708484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of cortical acetylcholine release by orexin A.
    Fadel J; Pasumarthi R; Reznikov LR
    Neuroscience; 2005; 130(2):541-7. PubMed ID: 15664710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of interruption to propofol sedation on auditory event-related potentials and electroencephalogram in intensive care patients.
    Yppärilä H; Nunes S; Korhonen I; Partanen J; Ruokonen E
    Crit Care; 2004 Dec; 8(6):R483-90. PubMed ID: 15566595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of MF-268, a new cholinesterase inhibitor, on acetylcholine and biogenic amines in rat cortex.
    Zhu XD; Cuadra G; Brufani M; Maggi T; Pagella PG; Williams E; Giacobini E
    J Neurosci Res; 1996 Jan; 43(1):120-6. PubMed ID: 8838583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.