BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 2049528)

  • 1. Protein dynamics. Comparative investigation on heme-proteins with different physiological roles.
    Di Iorio EE; Hiltpold UR; Filipovic D; Winterhalter KH; Gratton E; Vitrano E; Cupane A; Leone M; Cordone L
    Biophys J; 1991 Mar; 59(3):742-54. PubMed ID: 2049528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand binding to heme proteins. VI. Interconversion of taxonomic substates in carbonmonoxymyoglobin.
    Johnson JB; Lamb DC; Frauenfelder H; Müller JD; McMahon B; Nienhaus GU; Young RD
    Biophys J; 1996 Sep; 71(3):1563-73. PubMed ID: 8874030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isocyanide binding kinetics to monomeric hemoproteins. A study on the ligand partition between solvent and heme pocket.
    Di Iorio EE; Winterhalter KH; Giacometti GM
    Biophys J; 1987 Mar; 51(3):357-62. PubMed ID: 3567310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural heterogeneity of the Fe(2+)-N epsilon (HisF8) bond in various hemoglobin and myoglobin derivatives probed by the Raman-active iron histidine stretching mode.
    Gilch H; Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1993 Oct; 65(4):1470-85. PubMed ID: 8274641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic hole burning, hole filling, and conformational relaxation in heme proteins: direct evidence for the functional significance of a hierarchy of dynamical processes.
    Huang J; Ridsdale A; Wang J; Friedman JM
    Biochemistry; 1997 Nov; 36(47):14353-65. PubMed ID: 9398153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent heme kinetics with nonexponential binding and barrier relaxation in the absence of protein conformational substates.
    Ye X; Ionascu D; Gruia F; Yu A; Benabbas A; Champion PM
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14682-7. PubMed ID: 17804802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-dynamics-function relationships in Asian elephant (Elephas maximus) myoglobin. An optical spectroscopy and flash photolysis study on functionally important motions.
    Cupane A; Leone M; Vitrano E; Cordone L; Hiltpold UR; Winterhalter KH; Yu W; Di Iorio EE
    Biophys J; 1993 Dec; 65(6):2461-72. PubMed ID: 8312484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rebinding and relaxation in the myoglobin pocket.
    Ansari A; Berendzen J; Braunstein D; Cowen BR; Frauenfelder H; Hong MK; Iben IE; Johnson JB; Ormos P; Sauke TB
    Biophys Chem; 1987 May; 26(2-3):337-55. PubMed ID: 3607234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myoglobin recombination at low temperature. Two phases revealed by Fourier transform infrared spectroscopy.
    Chance MR; Campbell BF; Hoover R; Friedman JM
    J Biol Chem; 1987 May; 262(15):6959-61. PubMed ID: 3584103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand binding to heme proteins: connection between dynamics and function.
    Steinbach PJ; Ansari A; Berendzen J; Braunstein D; Chu K; Cowen BR; Ehrenstein D; Frauenfelder H; Johnson JB; Lamb DC
    Biochemistry; 1991 Apr; 30(16):3988-4001. PubMed ID: 2018767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infrared absorption study of the heme pocket dynamics of carbonmonoxyheme proteins.
    Kaposi AD; Vanderkooi JM; Stavrov SS
    Biophys J; 2006 Dec; 91(11):4191-200. PubMed ID: 16980362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand binding to heme proteins: II. Transitions in the heme pocket of myoglobin.
    Mourant JR; Braunstein DP; Chu K; Frauenfelder H; Nienhaus GU; Ormos P; Young RD
    Biophys J; 1993 Oct; 65(4):1496-507. PubMed ID: 8274643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal fluctuations between conformational substates of the Fe(2+)-HisF8 linkage in deoxymyoglobin probed by the Raman active Fe-N epsilon (HisF8) stretching vibration.
    Gilch H; Dreybrodt W; Schweitzer-Stenner R
    Biophys J; 1995 Jul; 69(1):214-27. PubMed ID: 7669899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different relaxations in myoglobin after photolysis.
    Levantino M; Cupane A; Zimányi L; Ormos P
    Proc Natl Acad Sci U S A; 2004 Oct; 101(40):14402-7. PubMed ID: 15385677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low temperature optical absorption spectroscopy: an approach to the study of stereodynamic properties of hemeproteins.
    Cupane A; Leone M; Vitrano E; Cordone L
    Eur Biophys J; 1995; 23(6):385-98. PubMed ID: 7729363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientational distribution of CO before and after photolysis of MbCO and HbCO: a determination using time-resolved polarized Mid-IR spectroscopy.
    Lim M; Jackson TA; Anfinrud PA
    J Am Chem Soc; 2004 Jun; 126(25):7946-57. PubMed ID: 15212544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhomogeneous broadening in spectral bands of carbonmonoxymyoglobin. The connection between spectral and functional heterogeneity.
    Ormos P; Ansari A; Braunstein D; Cowen BR; Frauenfelder H; Hong MK; Iben IE; Sauke TB; Steinbach PJ; Young RD
    Biophys J; 1990 Feb; 57(2):191-9. PubMed ID: 2317545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulations of carbon monoxide photodissociation in myoglobin: structural interpretation of the B states.
    Meller J; Elber R
    Biophys J; 1998 Feb; 74(2 Pt 1):789-802. PubMed ID: 9533692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water and ligand entry in myoglobin: assessing the speed and extent of heme pocket hydration after CO photodissociation.
    Goldbeck RA; Bhaskaran S; Ortega C; Mendoza JL; Olson JS; Soman J; Kliger DS; Esquerra RM
    Proc Natl Acad Sci U S A; 2006 Jan; 103(5):1254-9. PubMed ID: 16432219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geminate carbon monoxide rebinding to a c-type haem.
    Silkstone G; Jasaitis A; Vos MH; Wilson MT
    Dalton Trans; 2005 Nov; (21):3489-94. PubMed ID: 16234930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.