BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 2049530)

  • 21. Plasma separation using a hollow fiber membrane device.
    Buchholz DH; Lin A; Snyder E; McCullough J; Porten J; Anderson M; Smith J; Dalmasso A; Helphingstine C; Path M
    Transfusion; 1986; 26(2):145-50. PubMed ID: 3952789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of plasma solute-membrane interaction on mean pore diameter.
    Horiuchi T; Malchesky PS; Usami M; Emura M; Nosé Y
    ASAIO Trans; 1986; 32(1):429-34. PubMed ID: 2430604
    [No Abstract]   [Full Text] [Related]  

  • 23. Pulsed flow cascade filtration. Long-term experience in low density lipoprotein and lipoprotein a removal.
    Legallais C; Moriniére P; Fournier A; Jaffrin MY
    ASAIO J; 1996; 42(5):M463-7. PubMed ID: 8944924
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of filtration characteristics in submerged microfiltration for drinking water treatment.
    Lee S; Park PK; Kim JH; Yeon KM; Lee CH
    Water Res; 2008 Jun; 42(12):3109-21. PubMed ID: 18387649
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modelling of transmembrane pressure using slot/pore blocking model, response surface and artificial intelligence approach.
    Khan H; Khan SU; Hussain S; Ullah A
    Chemosphere; 2022 Mar; 290():133313. PubMed ID: 34921859
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Therapeutic apheresis application using membrane plasma fractionation technology: present scope and limitations.
    Sueoka A
    Ther Apher; 2000 Jun; 4(3):211-2. PubMed ID: 10910022
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of Fractionation Membranes in an Animal Model of Double Filtration Lipoprotein Apheresis.
    Krieter DH; Lange F; Lemke HD; Bonn F; Wanner C
    Ther Apher Dial; 2018 Apr; 22(2):189-195. PubMed ID: 29316258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of a plasma separator using ceramic membranes.
    Sakurai H; Ozawa K; Takesawa S; Sakai K
    ASAIO Trans; 1986; 32(1):410-3. PubMed ID: 3778744
    [No Abstract]   [Full Text] [Related]  

  • 29. Effect of pore size, shear rate, and harvest time during the constant permeate flux microfiltration of CHO cell culture supernatant.
    Stressmann M; Moresoli C
    Biotechnol Prog; 2008; 24(4):890-7. PubMed ID: 19194898
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of microfiltration performance with constant flux processing of secondary effluent.
    Parameshwaran K; Fane AG; Cho BD; Kim KJ
    Water Res; 2001 Dec; 35(18):4349-58. PubMed ID: 11763037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Backwashing procedure for on-line reuse of a plasma fractionator in cryofiltration.
    Sawada K; Ohshima T; Zborowski M; Malchesky PS; Koo AP; Skibinski CI
    J Clin Apher; 1992; 7(2):87-92. PubMed ID: 1429494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of the new polyethersulfone high-flux membrane DIAPES HF800 with conventional high-flux membranes during on-line haemodiafiltration.
    Samtleben W; Dengler C; Reinhardt B; Nothdurft A; Lemke HD
    Nephrol Dial Transplant; 2003 Nov; 18(11):2382-6. PubMed ID: 14551370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance evaluation of plasma fractionation membrane.
    Zhao C; Zhang X; Yue YL
    Ther Apher; 2002 Feb; 6(1):86-8. PubMed ID: 11886582
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance evaluation of cascade filtration with high flow rate recirculating plasma on the secondary filter.
    Busnach G; Dal Col A; Perrino ML; Brando B; Brunati C; Minetti L
    Int J Artif Organs; 1987 Mar; 10(2):121-8. PubMed ID: 3583428
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Asymmetric membrane filters for the removal of leukocytes from blood.
    Bruil A; van Aken WG; Beugeling T; Feijen J; Steneker I; Huisman JG; Prins HK
    J Biomed Mater Res; 1991 Dec; 25(12):1459-80. PubMed ID: 1794995
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Effect of Hybrid Process of Pre-ozonation and CNT Modification on Hollow Fiber Membrane Fouling Control].
    Guan YQ; Wang KL; Zhu XD; Dong D; Xue XL; Ma YL; Luan GR; Guo J
    Huan Jing Ke Xue; 2018 Aug; 39(8):3744-3752. PubMed ID: 29998682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fibrinogen Reduction During Selective Plasma Exchange due to Membrane Fouling.
    Ohkubo A; Okado T; Miyamoto S; Hashimoto Y; Komori S; Yamamoto M; Maeda T; Itagaki A; Yamamoto H; Seshima H; Kurashima N; Iimori S; Naito S; Sohara E; Uchida S; Rai T
    Ther Apher Dial; 2017 Jun; 21(3):232-237. PubMed ID: 28661096
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature dependent protein removal by large pore membrane filtration.
    Zborowski M; Malchesky PS; Nosé Y
    ASAIO Trans; 1989; 35(3):572-5. PubMed ID: 2597537
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solute removal capacity of high cut-off membrane plasma separators.
    Ohkubo A; Kurashima N; Nakamura A; Miyamoto S; Iimori S; Rai T
    Ther Apher Dial; 2013 Oct; 17(5):484-9. PubMed ID: 24107276
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel antifouling technique for the crossflow filtration using porous membranes: Experimental and CFD investigations of the periodic feed pressure technique.
    Zoubeik M; Salama A; Henni A
    Water Res; 2018 Dec; 146():159-176. PubMed ID: 30243059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.