These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 2049531)

  • 21. Viscoelasticity of pediatric blood and its implications for the testing of a pulsatile pediatric blood pump.
    Long JA; Undar A; Manning KB; Deutsch S
    ASAIO J; 2005; 51(5):563-6. PubMed ID: 16322719
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The quantification of hemodynamic parameters downstream of a Gianturco Zenith stent wire using newtonian and non-newtonian analog fluids in a pulsatile flow environment.
    Walker AM; Johnston CR; Rival DE
    J Biomech Eng; 2012 Nov; 134(11):111001. PubMed ID: 23387783
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro testing of artificial heart valves: comparison between Newtonian and non-Newtonian fluids.
    Pohl M; Wendt MO; Werner S; Koch B; Lerche D
    Artif Organs; 1996 Jan; 20(1):37-46. PubMed ID: 8645128
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows.
    Cho YI; Kensey KR
    Biorheology; 1991; 28(3-4):241-62. PubMed ID: 1932716
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The dynamics of pulsatile flow in distensible model arteries.
    Liepsch DW; Zimmer R
    Technol Health Care; 1995 Dec; 3(3):185-99. PubMed ID: 8749865
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90 degrees curved tube.
    Gijsen FJ; Allanic E; van de Vosse FN; Janssen JD
    J Biomech; 1999 Jul; 32(7):705-13. PubMed ID: 10400358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pulsatile flow of Casson's fluid through stenosed arteries with applications to blood flow.
    Chaturani P; Samy RP
    Biorheology; 1986; 23(5):499-511. PubMed ID: 3651573
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flow of non-Newtonian blood analog fluids in rigid curved and straight artery models.
    Mann DE; Tarbell JM
    Biorheology; 1990; 27(5):711-33. PubMed ID: 2271763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.
    Akbarzadeh P
    Comput Methods Programs Biomed; 2016 Apr; 126():3-19. PubMed ID: 26792174
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pulsatile flow of power-law fluid model for blood flow under periodic body acceleration.
    Chaturani P; Palanisamy V
    Biorheology; 1990; 27(5):747-58. PubMed ID: 2271765
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical simulations of pulsatile blood flow using a new constitutive model.
    Fang J; Owens RG
    Biorheology; 2006; 43(5):637-60. PubMed ID: 17047282
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of viscoelasticity in the tube model of airway reopening. II. Non-Newtonian gels and airway simulation.
    Hsu SH; Strohl KP; Haxhiu MA; Jamieson AM
    J Appl Physiol (1985); 1996 May; 80(5):1649-59. PubMed ID: 8727551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A theoretical computerized study for the electrical conductivity of arterial pulsatile blood flow by an elastic tube model.
    Shen H; Zhu Y; Qin KR
    Med Eng Phys; 2016 Dec; 38(12):1439-1448. PubMed ID: 27729198
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flush mounted hot film anemometer measurement of wall shear stress distal to a tri-leaflet valve for Newtonian and non-Newtonian blood analog fluids.
    Nandy S; Tarbell JM
    Biorheology; 1987; 24(5):483-500. PubMed ID: 2965604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rheological effects of blood in a nonplanar distal end-to-side anastomosis.
    Wang QQ; Ping BH; Xu QB; Wang W
    J Biomech Eng; 2008 Oct; 130(5):051009. PubMed ID: 19045516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A non-Newtonian fluid model for blood flow through arteries under stenotic conditions.
    Misra JC; Patra MK; Misra SC
    J Biomech; 1993 Sep; 26(9):1129-41. PubMed ID: 8408094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of physiological and simple pulsatile flows through stenosed arteries.
    Zendehbudi GR; Moayeri MS
    J Biomech; 1999 Sep; 32(9):959-65. PubMed ID: 10460133
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of blood flow parameters on flow patterns at arterial bifurcations--studies in models.
    Liepsch DW
    Monogr Atheroscler; 1990; 15():63-76. PubMed ID: 2404201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.