BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2049534)

  • 1. On the interaction between chromaffin granule membranes and intragranular vesicles--theory and analysis of freeze-fracture micrographs.
    Engel J; Pastushenko VF; Richter W; Donath E
    Biorheology; 1991; 28(1-2):75-87. PubMed ID: 2049534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperosmotic relaxation lysis of chromaffin granules is caused by interactions between the granular membrane and intragranular vesicles.
    Engel J; Donath E; Ermakov YA; Meyer HW; Richter W
    Biochim Biophys Acta; 1989 Oct; 985(2):111-9. PubMed ID: 2553113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two different types of lysis of chromaffin granules characterised by freeze-fracture electron microscopy and photon correlation spectroscopy.
    Engel J; Ermakov YA; Richter W; Donath E
    Biochim Biophys Acta; 1990 Oct; 1028(3):236-44. PubMed ID: 2223797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intragranular vesicles: new organelles in the secretory granules of adrenal chromaffin cells.
    Ornberg RL; Duong LT; Pollard HB
    Cell Tissue Res; 1986; 245(3):547-53. PubMed ID: 3757016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Core structure, internal osmotic pressure and irreversible structural changes of chromaffin granules during osmometer behaviour.
    Südhof TC
    Biochim Biophys Acta; 1982 Jan; 684(1):27-39. PubMed ID: 7055554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle segregation in chromaffin granule membranes by forced physical contact.
    Schuler G; Plattner H; Aberer W; Winkler H
    Biochim Biophys Acta; 1978 Nov; 513(2):244-54. PubMed ID: 718893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divalent cation-induced aggregation of chromaffin granule membranes.
    Morris SJ; Chiu VC; Haynes DH
    Membr Biochem; 1979; 2(2):163-201. PubMed ID: 42003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospholipids as adjuncts for calcium ion stimulated release of chromaffin granule contents: implications for mechanisms of exocytosis.
    Nayar R; Hope MJ; Cullis PR
    Biochemistry; 1982 Sep; 21(19):4583-9. PubMed ID: 7138818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics and determinants of osmotic lysis in chromaffin granules.
    Südhof TC; Morris SJ
    Biochim Biophys Acta; 1983 May; 730(2):207-16. PubMed ID: 6849904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chromaffin granule as a model for membrane fusion: implications for exocytosis.
    Morris SJ; Costello MJ; Robertson JD; Südhof TC; Odenwald WF; Haynes DH
    J Auton Nerv Syst; 1983 Jan; 7(1):19-33. PubMed ID: 6841901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tensile strength of the chromaffin granule membrane.
    Hiram Y; Nir A; Zinder O
    Biophys J; 1982 Jul; 39(1):65-9. PubMed ID: 7104452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water permeability of the chromaffin granule membrane.
    Sharp RR; Sen R
    Biophys J; 1982 Oct; 40(1):17-25. PubMed ID: 7139032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructural and cytochemical characterization of adrenal medullary plasma membrane vesicles and their interaction with chromaffin granules.
    Rosenheck K; Plattner H
    Biochim Biophys Acta; 1986 Apr; 856(2):373-82. PubMed ID: 3955049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freeze-fracture study of the chromaffin cell during exocytosis: evidence for connections between the plasma membrane and secretory granules and for movements of plasma membrane-associated particles.
    Aunis D; Hesketh JE; Devilliers G
    Cell Tissue Res; 1979 Apr; 197(3):433-41. PubMed ID: 455408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro reconstitution of chromaffin granule-cytoskeleton interactions: ionic factors influencing the association of F-actin with purified chromaffin granule membranes.
    Fowler VM; Pollard HB
    J Cell Biochem; 1982; 18(3):295-311. PubMed ID: 7068784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium-dependent regulation of chromaffin granule movement, membrane contact, and fusion during exocytosis.
    Pollard HB; Creutz CE; Fowler V; Scott J; Pazoles CJ
    Cold Spring Harb Symp Quant Biol; 1982; 46 Pt 2():819-34. PubMed ID: 6213354
    [No Abstract]   [Full Text] [Related]  

  • 17. Chromaffin granule-cytoskeleton interaction. Stabilization by F-actin of ATPase in purified chromaffin granule membranes.
    Morita K; Pollard HB
    FEBS Lett; 1985 Feb; 181(2):195-8. PubMed ID: 3156051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salt dependency of chromaffin granule aggregation by annexin II tetramer.
    Jones PG; Fitzpatrick S; Waisman DM
    Biochemistry; 1994 Nov; 33(46):13751-60. PubMed ID: 7947786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synexin-mediated fusion of bovine chromaffin granule ghosts. Effect of pH.
    Stutzin A; Cabantchik ZI; Lelkes PI; Pollard HB
    Biochim Biophys Acta; 1987 Nov; 905(1):205-12. PubMed ID: 2960380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation by Ca2+ of membrane elasticity of bovine chromaffin granules.
    Miyamoto S; Fujime S
    FEBS Lett; 1988 Sep; 238(1):67-70. PubMed ID: 3169256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.