These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 20495348)
1. A novel role for a TonB-family protein and photoregulation of iron acclimation in Fremyella diplosiphon. Pattanaik B; Montgomery BL Plant Signal Behav; 2010 Jul; 5(7):851-3. PubMed ID: 20495348 [TBL] [Abstract][Full Text] [Related]
2. FdTonB is involved in the photoregulation of cellular morphology during complementary chromatic adaptation in Fremyella diplosiphon. Pattanaik B; Montgomery BL Microbiology (Reading); 2010 Mar; 156(Pt 3):731-741. PubMed ID: 19959581 [TBL] [Abstract][Full Text] [Related]
3. Responses to iron limitation are impacted by light quality and regulated by RcaE in the chromatically acclimating cyanobacterium Fremyella diplosiphon. Pattanaik B; Busch AWU; Hu P; Chen J; Montgomery BL Microbiology (Reading); 2014 May; 160(Pt 5):992-1005. PubMed ID: 24623652 [TBL] [Abstract][Full Text] [Related]
4. Independence and interdependence of the photoregulation of pigmentation and development in Fremyella diplosiphon. Bordowitz JR; Whitaker MJ; Montgomery BL Commun Integr Biol; 2010 Mar; 3(2):151-3. PubMed ID: 20585508 [TBL] [Abstract][Full Text] [Related]
5. Photoregulation of cellular morphology during complementary chromatic adaptation requires sensor-kinase-class protein RcaE in Fremyella diplosiphon. Bordowitz JR; Montgomery BL J Bacteriol; 2008 Jun; 190(11):4069-74. PubMed ID: 18390655 [TBL] [Abstract][Full Text] [Related]
6. Regulation of phycoerythrin synthesis and cellular morphology in Fremyella diplosiphon green mutants. Pattanaik B; Whitaker MJ; Montgomery BL Biochem Biophys Res Commun; 2011 Sep; 413(2):182-8. PubMed ID: 21888899 [TBL] [Abstract][Full Text] [Related]
7. Exploiting the autofluorescent properties of photosynthetic pigments for analysis of pigmentation and morphology in live Fremyella diplosiphon cells. Bordowitz JR; Montgomery BL Sensors (Basel); 2010; 10(7):6969-79. PubMed ID: 22163584 [TBL] [Abstract][Full Text] [Related]
8. Regulation of BolA abundance mediates morphogenesis in Fremyella diplosiphon. Singh SP; Montgomery BL Front Microbiol; 2015; 6():1215. PubMed ID: 26594203 [TBL] [Abstract][Full Text] [Related]
9. Morphogenes bolA and mreB mediate the photoregulation of cellular morphology during complementary chromatic acclimation in Fremyella diplosiphon. Singh SP; Montgomery BL Mol Microbiol; 2014 Jul; 93(1):167-82. PubMed ID: 24823920 [TBL] [Abstract][Full Text] [Related]
10. Impact of Zero-Valent Iron Nanoparticles on Fathabad SG; Tabatabai B; Walker D; Chen H; Lu J; Aslan K; Uddin J; Ghann W; Sitther V ACS Omega; 2020 Jun; 5(21):12166-12173. PubMed ID: 32548398 [TBL] [Abstract][Full Text] [Related]
11. Convergence and divergence of the photoregulation of pigmentation and cellular morphology in Fremyella diplosiphon. Pattanaik B; Whitaker MJ; Montgomery BL Plant Signal Behav; 2011 Dec; 6(12):2038-41. PubMed ID: 22112451 [TBL] [Abstract][Full Text] [Related]
12. The Tryptophan-Rich Sensory Protein (TSPO) is Involved in Stress-Related and Light-Dependent Processes in the Cyanobacterium Fremyella diplosiphon. Busch AW; Montgomery BL Front Microbiol; 2015; 6():1393. PubMed ID: 26696996 [TBL] [Abstract][Full Text] [Related]
13. CpcF-dependent regulation of pigmentation and development in Fremyella diplosiphon. Whitaker MJ; Bordowitz JR; Montgomery BL Biochem Biophys Res Commun; 2009 Nov; 389(4):602-6. PubMed ID: 19748483 [TBL] [Abstract][Full Text] [Related]
14. Tryptophan-Rich Sensory Protein/Translocator Protein (TSPO) from Cyanobacterium Fremyella diplosiphon Binds a Broad Range of Functionally Relevant Tetrapyrroles. Busch AW; WareJoncas Z; Montgomery BL Biochemistry; 2017 Jan; 56(1):73-84. PubMed ID: 27990801 [TBL] [Abstract][Full Text] [Related]
15. Distinct light-, stress-, and nutrient-dependent regulation of multiple tryptophan-rich sensory protein (TSPO) genes in the cyanobacterium Fremyella diplosiphon. Busch AW; Montgomery BL Plant Signal Behav; 2017 Mar; 12(3):e1293221. PubMed ID: 28277971 [TBL] [Abstract][Full Text] [Related]
16. Characterization of green mutants in Fremyella diplosiphon provides insight into the impact of phycoerythrin deficiency and linker function on complementary chromatic adaptation. Whitaker MJ; Pattanaik B; Montgomery BL Biochem Biophys Res Commun; 2011 Jan; 404(1):52-6. PubMed ID: 21094137 [TBL] [Abstract][Full Text] [Related]
17. Construction of shuttle plasmids which can be efficiently mobilized from Escherichia coli into the chromatically adapting cyanobacterium, Fremyella diplosiphon. Cobley JG; Zerweck E; Reyes R; Mody A; Seludo-Unson JR; Jaeger H; Weerasuriya S; Navankasattusas S Plasmid; 1993 Sep; 30(2):90-105. PubMed ID: 8234495 [TBL] [Abstract][Full Text] [Related]
18. Light-dependent and light-independent protochlorophyllide oxidoreductases in the chromatically adapting cyanobacterium Fremyella diplosiphon UTEX 481. Shui J; Saunders E; Needleman R; Nappi M; Cooper J; Hall L; Kehoe D; Stowe-Evans E Plant Cell Physiol; 2009 Aug; 50(8):1507-21. PubMed ID: 19561333 [TBL] [Abstract][Full Text] [Related]
19. Identification of a Halotolerant Mutant via In Vitro Mutagenesis in the Cyanobacterium Fremyella diplosiphon. Tabatabai B; Arumanayagam AS; Enitan O; Mani A; Natarajan SS; Sitther V Curr Microbiol; 2017 Jan; 74(1):77-83. PubMed ID: 27844126 [TBL] [Abstract][Full Text] [Related]
20. Overexpression of hlyB and mdh genes confers halotolerance in Fremyella diplosiphon, a freshwater cyanobacterium. Tabatabai B; Arumanayagam AS; Enitan O; Mani A; Natarajan SS; Sitther V Enzyme Microb Technol; 2017 Aug; 103():12-17. PubMed ID: 28554380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]