These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 20495363)

  • 21. Compartment-specific activation of PPARγ governs breast cancer tumor growth, via metabolic reprogramming and symbiosis.
    Avena P; Anselmo W; Whitaker-Menezes D; Wang C; Pestell RG; Lamb RS; Hulit J; Casaburi I; Andò S; Martinez-Outschoorn UE; Lisanti MP; Sotgia F
    Cell Cycle; 2013 May; 12(9):1360-70. PubMed ID: 23574724
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Matrix remodeling stimulates stromal autophagy, "fueling" cancer cell mitochondrial metabolism and metastasis.
    Castello-Cros R; Bonuccelli G; Molchansky A; Capozza F; Witkiewicz AK; Birbe RC; Howell A; Pestell RG; Whitaker-Menezes D; Sotgia F; Lisanti MP
    Cell Cycle; 2011 Jun; 10(12):2021-34. PubMed ID: 21646868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Positive feedback in Cav-1-ROS signalling in PSCs mediates metabolic coupling between PSCs and tumour cells.
    Shao S; Qin T; Qian W; Yue Y; Xiao Y; Li X; Zhang D; Wang Z; Ma Q; Lei J
    J Cell Mol Med; 2020 Aug; 24(16):9397-9408. PubMed ID: 32633891
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Caveolin-1 and accelerated host aging in the breast tumor microenvironment: chemoprevention with rapamycin, an mTOR inhibitor and anti-aging drug.
    Mercier I; Camacho J; Titchen K; Gonzales DM; Quann K; Bryant KG; Molchansky A; Milliman JN; Whitaker-Menezes D; Sotgia F; Jasmin JF; Schwarting R; Pestell RG; Blagosklonny MV; Lisanti MP
    Am J Pathol; 2012 Jul; 181(1):278-93. PubMed ID: 22698676
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment.
    Martinez-Outschoorn UE; Pavlides S; Howell A; Pestell RG; Tanowitz HB; Sotgia F; Lisanti MP
    Int J Biochem Cell Biol; 2011 Jul; 43(7):1045-51. PubMed ID: 21300172
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Betulinic acid suppresses breast cancer aerobic glycolysis via caveolin-1/NF-κB/c-Myc pathway.
    Jiao L; Wang S; Zheng Y; Wang N; Yang B; Wang D; Yang D; Mei W; Zhao Z; Wang Z
    Biochem Pharmacol; 2019 Mar; 161():149-162. PubMed ID: 30684465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidized ATM-mediated glycolysis enhancement in breast cancer-associated fibroblasts contributes to tumor invasion through lactate as metabolic coupling.
    Sun K; Tang S; Hou Y; Xi L; Chen Y; Yin J; Peng M; Zhao M; Cui X; Liu M
    EBioMedicine; 2019 Mar; 41():370-383. PubMed ID: 30799198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The autophagic tumor stroma model of cancer: Role of oxidative stress and ketone production in fueling tumor cell metabolism.
    Pavlides S; Tsirigos A; Migneco G; Whitaker-Menezes D; Chiavarina B; Flomenberg N; Frank PG; Casimiro MC; Wang C; Pestell RG; Martinez-Outschoorn UE; Howell A; Sotgia F; Lisanti MP
    Cell Cycle; 2010 Sep; 9(17):3485-505. PubMed ID: 20861672
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for a stromal-epithelial "lactate shuttle" in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts.
    Whitaker-Menezes D; Martinez-Outschoorn UE; Lin Z; Ertel A; Flomenberg N; Witkiewicz AK; Birbe RC; Howell A; Pavlides S; Gandara R; Pestell RG; Sotgia F; Philp NJ; Lisanti MP
    Cell Cycle; 2011 Jun; 10(11):1772-83. PubMed ID: 21558814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tumoral microvesicle-activated glycometabolic reprogramming in fibroblasts promotes the progression of oral squamous cell carcinoma.
    Jiang E; Xu Z; Wang M; Yan T; Huang C; Zhou X; Liu Q; Wang L; Chen Y; Wang H; Liu K; Shao Z; Shang Z
    FASEB J; 2019 Apr; 33(4):5690-5703. PubMed ID: 30698991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth.
    Martinez-Outschoorn UE; Lisanti MP; Sotgia F
    Semin Cancer Biol; 2014 Apr; 25():47-60. PubMed ID: 24486645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Towards a new "stromal-based" classification system for human breast cancer prognosis and therapy.
    Witkiewicz AK; Casimiro MC; Dasgupta A; Mercier I; Wang C; Bonuccelli G; Jasmin JF; Frank PG; Pestell RG; Kleer CG; Sotgia F; Lisanti MP
    Cell Cycle; 2009 Jun; 8(11):1654-8. PubMed ID: 19448435
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Caveolin-1-deficient fibroblasts promote migration, invasion, and stemness via activating the TGF-β/Smad signaling pathway in breast cancer cells.
    Huang Q; Wu L; Wang Y; Kong X; Xiao X; Huang Q; Li M; Zhai Y; Shi F; Zhao R; Zhong J; Xiong L
    Acta Biochim Biophys Sin (Shanghai); 2022 Nov; 54(11):1587-1598. PubMed ID: 36604141
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Caveolin-1 is a modulator of fibroblast activation and a potential biomarker for gastric cancer.
    Shen XJ; Zhang H; Tang GS; Wang XD; Zheng R; Wang Y; Zhu Y; Xue XC; Bi JW
    Int J Biol Sci; 2015; 11(4):370-9. PubMed ID: 25798057
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum dots-based immunofluorescent imaging of stromal fibroblasts Caveolin-1 and light chain 3B expression and identification of their clinical significance in human gastric cancer.
    He Y; Zhao X; Gao J; Fan L; Yang G; Cho WC; Chen H
    Int J Mol Sci; 2012 Oct; 13(11):13764-80. PubMed ID: 23203033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CHIP/Stub1 regulates the Warburg effect by promoting degradation of PKM2 in ovarian carcinoma.
    Shang Y; He J; Wang Y; Feng Q; Zhang Y; Guo J; Li J; Li S; Wang Y; Yan G; Ren F; Shi Y; Xu J; Zeps N; Zhai Y; He D; Chang Z
    Oncogene; 2017 Jul; 36(29):4191-4200. PubMed ID: 28346425
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the "reverse Warburg effect" in positive lymph node tissue.
    Sotgia F; Whitaker-Menezes D; Martinez-Outschoorn UE; Flomenberg N; Birbe RC; Witkiewicz AK; Howell A; Philp NJ; Pestell RG; Lisanti MP
    Cell Cycle; 2012 Apr; 11(7):1445-54. PubMed ID: 22395432
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scleroderma-like properties of skin from caveolin-1-deficient mice: implications for new treatment strategies in patients with fibrosis and systemic sclerosis.
    Castello-Cros R; Whitaker-Menezes D; Molchansky A; Purkins G; Soslowsky LJ; Beason DP; Sotgia F; Iozzo RV; Lisanti MP
    Cell Cycle; 2011 Jul; 10(13):2140-50. PubMed ID: 21670602
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shikonin reverses cancer-associated fibroblast-induced gemcitabine resistance in pancreatic cancer cells by suppressing monocarboxylate transporter 4-mediated reverse Warburg effect.
    Hu X; Peng X; Zhang Y; Fan S; Liu X; Song Y; Ren S; Chen L; Chen Y; Wang R; Peng J; Shen X; Chen Y
    Phytomedicine; 2024 Jan; 123():155214. PubMed ID: 38134861
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Caveolin-1 regulates cancer cell metabolism via scavenging Nrf2 and suppressing MnSOD-driven glycolysis.
    Hart PC; Ratti BA; Mao M; Ansenberger-Fricano K; Shajahan-Haq AN; Tyner AL; Minshall RD; Bonini MG
    Oncotarget; 2016 Jan; 7(1):308-22. PubMed ID: 26543228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.