BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 20495378)

  • 1. GATA-1 directly regulates p21 gene expression during erythroid differentiation.
    Papetti M; Wontakal SN; Stopka T; Skoultchi AI
    Cell Cycle; 2010 May; 9(10):1972-80. PubMed ID: 20495378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erythroid maturation and proliferation arrest: the GATA-1 connection: comment on: Papetti M. Cell cycle 2010; 9:1972-80.
    Friedman AD
    Cell Cycle; 2010 May; 9(10):1877. PubMed ID: 20505326
    [No Abstract]   [Full Text] [Related]  

  • 3. Coordinating red cell differentiation with cell cycle arrest: GATA-1 activation of p21.
    Goldfarb AN
    Cell Cycle; 2010 Jun; 9(11):2061. PubMed ID: 20559028
    [No Abstract]   [Full Text] [Related]  

  • 4. The leukemia associated ETO nuclear repressor gene is regulated by the GATA-1 transcription factor in erythroid/megakaryocytic cells.
    Ajore R; Dhanda RS; Gullberg U; Olsson I
    BMC Mol Biol; 2010 May; 11():38. PubMed ID: 20487545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A regulatory network governing Gata1 and Gata2 gene transcription orchestrates erythroid lineage differentiation.
    Moriguchi T; Yamamoto M
    Int J Hematol; 2014 Nov; 100(5):417-24. PubMed ID: 24638828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of erythrocyte protein 4.2 gene expression during differentiation of murine erythroleukemia cells.
    Karacay B; Chang LS
    Genomics; 1999 Jul; 59(1):6-17. PubMed ID: 10395794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knockdown of ZNF268, which is transcriptionally downregulated by GATA-1, promotes proliferation of K562 cells.
    Zeng Y; Wang W; Ma J; Wang X; Guo M; Li W
    PLoS One; 2012; 7(1):e29518. PubMed ID: 22235304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GATA factor switching from GATA2 to GATA1 contributes to erythroid differentiation.
    Suzuki M; Kobayashi-Osaki M; Tsutsumi S; Pan X; Ohmori S; Takai J; Moriguchi T; Ohneda O; Ohneda K; Shimizu R; Kanki Y; Kodama T; Aburatani H; Yamamoto M
    Genes Cells; 2013 Nov; 18(11):921-33. PubMed ID: 23911012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forced FOG1 expression in erythroleukemia cells: Induction of erythroid genes and repression of myelo-lymphoid transcription factor PU.1.
    Fujiwara T; Sasaki K; Saito K; Hatta S; Ichikawa S; Kobayashi M; Okitsu Y; Fukuhara N; Onishi Y; Harigae H
    Biochem Biophys Res Commun; 2017 Apr; 485(2):380-387. PubMed ID: 28216155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversal of tumorigenicity and the block to differentiation in erythroleukemia cells by GATA-1.
    Choe KS; Radparvar F; Matushansky I; Rekhtman N; Han X; Skoultchi AI
    Cancer Res; 2003 Oct; 63(19):6363-9. PubMed ID: 14559825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PU.1 directly regulates cdk6 gene expression, linking the cell proliferation and differentiation programs in erythroid cells.
    Choe KS; Ujhelly O; Wontakal SN; Skoultchi AI
    J Biol Chem; 2010 Jan; 285(5):3044-52. PubMed ID: 19955566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EKLF directly activates the p21WAF1/CIP1 gene by proximal promoter and novel intronic regulatory regions during erythroid differentiation.
    Siatecka M; Lohmann F; Bao S; Bieker JJ
    Mol Cell Biol; 2010 Jun; 30(11):2811-22. PubMed ID: 20368355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An intricate regulatory circuit between FLI1 and GATA1/GATA2/LDB1/ERG dictates erythroid vs. megakaryocytic differentiation.
    Wang C; Hu M; Yu K; Liu W; Hu A; Kuang Y; Huang L; Gajendran B; Zacksenhaus E; Xiao X; Ben-David Y
    Mol Med Rep; 2024 Jun; 29(6):. PubMed ID: 38695236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gfi-1B promoter remains associated with active chromatin marks throughout erythroid differentiation of human primary progenitor cells.
    Laurent B; Randrianarison-Huetz V; Kadri Z; Roméo PH; Porteu F; Duménil D
    Stem Cells; 2009 Sep; 27(9):2153-62. PubMed ID: 19522008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GATA-1 binding sites in exon 1 direct erythroid-specific transcription of PPOX.
    de Vooght KM; van Wijk R; van Solinge WW
    Gene; 2008 Feb; 409(1-2):83-91. PubMed ID: 18191920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PML4 facilitates erythroid differentiation by enhancing the transcriptional activity of GATA-1.
    Wu J; Zhou LQ; Yu W; Zhao ZG; Xie XM; Wang WT; Xiong J; Li M; Xue Z; Wang X; Zhang P; Mao BB; Hao DL; Lv X; Liu DP
    Blood; 2014 Jan; 123(2):261-70. PubMed ID: 24255919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear interacting SET domain protein 1 inactivation impairs GATA1-regulated erythroid differentiation and causes erythroleukemia.
    Leonards K; Almosailleakh M; Tauchmann S; Bagger FO; Thirant C; Juge S; Bock T; Méreau H; Bezerra MF; Tzankov A; Ivanek R; Losson R; Peters AHFM; Mercher T; Schwaller J
    Nat Commun; 2020 Jun; 11(1):2807. PubMed ID: 32533074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CDC6 expression is regulated by lineage-specific transcription factor GATA1.
    Fernández-Morales B; Pavón L; Calés C
    Cell Cycle; 2012 Aug; 11(16):3055-66. PubMed ID: 22871742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of mouse GATA-1 function by the glucocorticoid receptor: possible mechanism of steroid inhibition of erythroleukemia cell differentiation.
    Chang TJ; Scher BM; Waxman S; Scher W
    Mol Endocrinol; 1993 Apr; 7(4):528-42. PubMed ID: 8502237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possible interaction between B1 retrotransposon-containing sequences and β(major) globin gene transcriptional activation during MEL cell erythroid differentiation.
    Vizirianakis IS; Tezias SS; Amanatiadou EP; Tsiftsoglou AS
    Cell Biol Int; 2012 Jan; 36(1):47-55. PubMed ID: 21970403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.