These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 20496004)

  • 1. A novel coronary artery bypass graft design of sequential anastomoses.
    Kabinejadian F; Chua LP; Ghista DN; Sankaranarayanan M; Tan YS
    Ann Biomed Eng; 2010 Oct; 38(10):3135-50. PubMed ID: 20496004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro measurements of velocity and wall shear stress in a novel sequential anastomotic graft design model under pulsatile flow conditions.
    Kabinejadian F; Ghista DN; Su B; Nezhadian MK; Chua LP; Yeo JH; Leo HL
    Med Eng Phys; 2014 Oct; 36(10):1233-45. PubMed ID: 25103345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational fluid dynamic evaluation of the side-to-side anastomosis for arteriovenous fistula.
    Hull JE; Balakin BV; Kellerman BM; Wrolstad DK
    J Vasc Surg; 2013 Jul; 58(1):187-93.e1. PubMed ID: 23433819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of angle on wall shear stresses in a LIMA to LAD anastomosis: numerical modelling of pulsatile flow.
    Freshwater IJ; Morsi YS; Lai T
    Proc Inst Mech Eng H; 2006 Oct; 220(7):743-57. PubMed ID: 17117764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longer coronary anastomosis provides lower energy loss in coronary artery bypass grafting.
    Tsukui H; Shinke M; Park YK; Yamazaki K
    Heart Vessels; 2017 Jan; 32(1):83-89. PubMed ID: 27484320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison between experimentally measured flow patterns for straight and helical type graft.
    Bernad SI; Bosioc A; Bernad ES; Craina ML
    Biomed Mater Eng; 2014; 24(1):853-60. PubMed ID: 24211972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unsteady simulation of distal blood flow in an end-to-side anastomosed coronary bypass graft with stenosis.
    Najarian S; Dargahi J; Firouzi F; Afsari J
    Biomed Mater Eng; 2006; 16(5):337-47. PubMed ID: 17075169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Helical type coronary bypass graft performance: Experimental investigations.
    Bernad SI; Bosioc AI; Bernad ES; Craina ML
    Biomed Mater Eng; 2015; 26 Suppl 1():S477-86. PubMed ID: 26406039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow and wall shear stress in end-to-side and side-to-side anastomosis of venous coronary artery bypass grafts.
    Frauenfelder T; Boutsianis E; Schertler T; Husmann L; Leschka S; Poulikakos D; Marincek B; Alkadhi H
    Biomed Eng Online; 2007 Sep; 6():35. PubMed ID: 17897460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational fluid dynamics study of the end-side and sequential coronary artery bypass anastomoses in a native coronary occlusion model.
    Matsuura K; Jin WW; Liu H; Matsumiya G
    Interact Cardiovasc Thorac Surg; 2018 Apr; 26(4):583-589. PubMed ID: 29190348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of top end anastomosis design on patency and flow stability in coronary artery bypass grafting.
    Koyama S; Kitamura T; Itatani K; Yamamoto T; Miyazaki S; Oka N; Nakashima K; Horai T; Ono M; Miyaji K
    Heart Vessels; 2016 May; 31(5):643-8. PubMed ID: 25910614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of numerical simulation with PIV measurements for two anastomosis models.
    Zhang JM; Chua LP; Ghista DN; Zhou TM; Tan YS
    Med Eng Phys; 2008 Mar; 30(2):226-47. PubMed ID: 17466565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interposition vein cuff anastomosis alters wall shear stress distribution in the recipient artery.
    How TV; Rowe CS; Gilling-Smith GL; Harris PL
    J Vasc Surg; 2000 May; 31(5):1008-17. PubMed ID: 10805893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational investigations of a new prosthetic femoral-popliteal bypass graft design.
    O'Brien TP; Grace P; Walsh M; Burke P; McGloughlin T
    J Vasc Surg; 2005 Dec; 42(6):1169-75. PubMed ID: 16376210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses.
    Chen J; Lu XY; Wang W
    J Biomech; 2006; 39(11):1983-95. PubMed ID: 16055134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Computational Fluid Dynamics and Particle Image Velocimetry Models of Distal-End Side-to-Side and End-to-Side Anastomoses for Coronary Artery Bypass Grafting in a Pulsatile Flow.
    Shintani Y; Iino K; Yamamoto Y; Kato H; Takemura H; Kiwata T
    Circ J; 2017 Dec; 82(1):110-117. PubMed ID: 28824030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of graft-host diameter ratio on the hemodynamics of CABG.
    Qiao A; Liu Y
    Biomed Mater Eng; 2006; 16(3):189-201. PubMed ID: 16518018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential venous anastomosis design to enhance patency of arterio-venous grafts for hemodialysis.
    Kabinejadian F; Su B; Ghista DN; Ismail M; Kim S; Leo HL
    Comput Methods Biomech Biomed Engin; 2017 Jan; 20(1):85-93. PubMed ID: 27328413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.