BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 20496008)

  • 41. Heavy metal bioavailability and effects: II. Histopathology-bioaccumulation relationships caused by mining activities in the Gulf of Cádiz (SW, Spain).
    Riba I; Blasco J; Jiménez-Tenorio N; de Canales ML; DelValls TA
    Chemosphere; 2005 Feb; 58(5):671-82. PubMed ID: 15620761
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Subcellular partitioning profiles and metallothionein levels in indigenous clams Moerella iridescens from a metal-impacted coastal bay.
    Wang Z; Feng C; Ye C; Wang Y; Yan C; Li R; Yan Y; Chi Q
    Aquat Toxicol; 2016 Jul; 176():10-23. PubMed ID: 27104239
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Speciation of heavy metals in recent sediments of three coastal ecosystems in the Gulf of Cádiz, southwest Iberian Peninsula.
    Sáenz V; Blasco J; Gómez-Parra A
    Environ Toxicol Chem; 2003 Dec; 22(12):2833-9. PubMed ID: 14713021
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metal and metalloid pollution in shelf sediments from the Gulf of Cádiz (Southwest Spain): Long-lasting effects of a historical mining area.
    Besada V; Bellas J; Sánchez-Marín P; Bernárdez P; Schultze F
    Environ Pollut; 2022 Feb; 295():118675. PubMed ID: 34906592
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Geochemistry and bioavailability of metals in sediments from northern San Francisco Bay.
    Lu XQ; Werner I; Young TM
    Environ Int; 2005 May; 31(4):593-602. PubMed ID: 15788199
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metal contamination of estuarine intertidal sediments of Moreton Bay, Australia.
    Morelli G; Gasparon M
    Mar Pollut Bull; 2014 Dec; 89(1-2):435-443. PubMed ID: 25457811
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The influence of small-scale circum-neutral pH change on Cu-bioavailability and toxicity to an estuarine bivalve (Austriella cf plicifera) in whole-sediment toxicity tests.
    Hutchins CM; Teasdale PR; Yip Lee S; Simpson SL
    Sci Total Environ; 2008 Nov; 405(1-3):87-95. PubMed ID: 18675442
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Heavy metal concentrations in surface sediments and Manila clams (Ruditapes philippinarum) from the Dalian coast, China after the Dalian port oil spill.
    Zhao L; Yang F; Yan X; Huo Z; Zhang G
    Biol Trace Elem Res; 2012 Nov; 149(2):241-7. PubMed ID: 22535597
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assessing the significance of Ruditapes philippinarum as a sentinel for sediment pollution: bioaccumulation and biomarker responses.
    Moschino V; Delaney E; Da Ros L
    Environ Pollut; 2012 Dec; 171():52-60. PubMed ID: 22871644
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Have the bioavailabilities of trace metals to a suite of biomonitors changed over three decades in SW England estuaries historically affected by mining?
    Rainbow PS; Kriefman S; Smith BD; Luoma SN
    Sci Total Environ; 2011 Mar; 409(8):1589-602. PubMed ID: 21315427
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of experimental CO2 leakage on solubility and transport of seven trace metals in seawater and sediment.
    Ardelan MV; Steinnes E; Lierhagen S; Linde SO
    Sci Total Environ; 2009 Dec; 407(24):6255-66. PubMed ID: 19800660
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Distribution of butyltins (TBT, DBT, MBT) in sediments of Gulf of Cádiz (Spain) and its bioaccumulation in the clam Ruditapes philippinarum.
    Garg A; Antón-Martín R; García-Luque E; Riba I; DelValls TA
    Ecotoxicology; 2009 Nov; 18(8):1029-35. PubMed ID: 19618267
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metal fractionation in marine sediments acidified by enrichment of CO
    de Orte MR; Bonnail E; Sarmiento AM; Bautista-Chamizo E; Basallote MD; Riba I; DelValls Á; Nieto JM
    Mar Pollut Bull; 2018 Jun; 131(Pt A):611-619. PubMed ID: 29886988
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of sorbent amendments for in situ remediation of metal-contaminated sediments.
    Kwon S; Thomas J; Reed BE; Levine L; Magar VS; Farrar D; Bridges TS; Ghosh U
    Environ Toxicol Chem; 2010 Sep; 29(9):1883-92. PubMed ID: 20821645
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of CO
    Passarelli MC; Ray S; Cesar A; DelValls TA; Riba I
    Mar Pollut Bull; 2018 Aug; 133():124-136. PubMed ID: 30041299
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Studying the effect of CO2-induced acidification on sediment toxicity using acute amphipod toxicity test.
    Basallote MD; De Orte MR; DelValls TÁ; Riba I
    Environ Sci Technol; 2014; 48(15):8864-72. PubMed ID: 24988484
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Distribution, enrichment, and potential toxicity of trace metals in the surface sediments of Sundarban mangrove ecosystem, Bangladesh: a baseline study before Sundarban oil spill of December, 2014.
    Kumar A; Ramanathan A; Prasad MB; Datta D; Kumar M; Sappal SM
    Environ Sci Pollut Res Int; 2016 May; 23(9):8985-99. PubMed ID: 26822216
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metal accumulation, growth and reproduction of razor clam Sinonovacula constricta transplanted in a multi-metal contaminated estuary.
    Ke Y; Wang WX
    Sci Total Environ; 2018 Sep; 636():829-837. PubMed ID: 29727849
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influences of sediment geochemistry on metal accumulation rates and toxicity in the aquatic oligochaete Tubifex tubifex.
    Méndez-Fernández L; De Jonge M; Bervoets L
    Aquat Toxicol; 2014 Dec; 157():109-19. PubMed ID: 25456225
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metal mobility and toxicity to microalgae associated with acidification of sediments: CO2 and acid comparison.
    De Orte MR; Lombardi AT; Sarmiento AM; Basallote MD; Rodriguez-Romero A; Riba I; Del Valls A
    Mar Environ Res; 2014 May; 96():136-44. PubMed ID: 24148229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.