These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 20496295)

  • 1. Pathogenesis of inflammation and repair in advanced COPD.
    Cornwell WD; Kim V; Song C; Rogers TJ
    Semin Respir Crit Care Med; 2010 Jun; 31(3):257-66. PubMed ID: 20496295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remodeling in response to infection and injury. Airway inflammation and hypersecretion of mucus in smoking subjects with chronic obstructive pulmonary disease.
    Maestrelli P; Saetta M; Mapp CE; Fabbri LM
    Am J Respir Crit Care Med; 2001 Nov; 164(10 Pt 2):S76-80. PubMed ID: 11734472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects of smoking on the pathogenesis of COPD].
    Tatsumi K
    Nihon Rinsho; 2007 Apr; 65(4):605-10. PubMed ID: 17419375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional significance of apoptosis in chronic obstructive pulmonary disease.
    Park JW; Ryter SW; Choi AM
    COPD; 2007 Dec; 4(4):347-53. PubMed ID: 18027162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Necroptosis Signaling Promotes Inflammation, Airway Remodeling, and Emphysema in Chronic Obstructive Pulmonary Disease.
    Lu Z; Van Eeckhoutte HP; Liu G; Nair PM; Jones B; Gillis CM; Nalkurthi BC; Verhamme F; Buyle-Huybrecht T; Vandenabeele P; Vanden Berghe T; Brusselle GG; Horvat JC; Murphy JM; Wark PA; Bracke KR; Fricker M; Hansbro PM
    Am J Respir Crit Care Med; 2021 Sep; 204(6):667-681. PubMed ID: 34133911
    [No Abstract]   [Full Text] [Related]  

  • 6. Inflammatory cells and chronic obstructive pulmonary disease.
    Tetley TD
    Curr Drug Targets Inflamm Allergy; 2005 Dec; 4(6):607-18. PubMed ID: 17305517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic obstructive pulmonary disease and lung cancer: new molecular insights.
    Adcock IM; Caramori G; Barnes PJ
    Respiration; 2011; 81(4):265-84. PubMed ID: 21430413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema.
    Demedts IK; Demoor T; Bracke KR; Joos GF; Brusselle GG
    Respir Res; 2006 Mar; 7(1):53. PubMed ID: 16571143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine particulate matter (PM
    Zhou T; Hu Y; Wang Y; Sun C; Zhong Y; Liao J; Wang G
    Environ Pollut; 2019 May; 248():1-9. PubMed ID: 30763815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [New concepts in the pathogenesis and pathophysiology of COPD].
    Fira-Mladinescu O; Tudorache V; Mihăicută S; Muntean D
    Pneumologia; 2007; 56(1):24, 26-31. PubMed ID: 17491205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can we delay the accelerated lung aging in COPD? Anti-aging molecules and interventions.
    Papaioannou AI; Rossios C; Kostikas K; Ito K
    Curr Drug Targets; 2013 Feb; 14(2):149-57. PubMed ID: 23256715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Airway inflammation in chronic obstructive pulmonary disease: comparisons with asthma.
    Sutherland ER; Martin RJ
    J Allergy Clin Immunol; 2003 Nov; 112(5):819-27; quiz 828. PubMed ID: 14610463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox.
    Eapen MS; Myers S; Walters EH; Sohal SS
    Expert Rev Respir Med; 2017 Oct; 11(10):827-839. PubMed ID: 28743228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nrf2 expression is increased in peripheral blood mononuclear cells derived from mild-moderate ex-smoker COPD patients with persistent oxidative stress.
    Fratta Pasini AM; Ferrari M; Stranieri C; Vallerio P; Mozzini C; Garbin U; Zambon G; Cominacini L
    Int J Chron Obstruct Pulmon Dis; 2016; 11():1733-43. PubMed ID: 27555763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulmonary epithelium, cigarette smoke, and chronic obstructive pulmonary disease.
    Thorley AJ; Tetley TD
    Int J Chron Obstruct Pulmon Dis; 2007; 2(4):409-28. PubMed ID: 18268916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of Forkhead box C1 attenuates oxidative stress, inflammation and apoptosis in chronic obstructive pulmonary disease.
    Xia S; Qu J; Jia H; He W; Li J; Zhao L; Mao M; Zhao Y
    Life Sci; 2019 Jan; 216():75-84. PubMed ID: 30428305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1.
    Malhotra D; Thimmulappa R; Navas-Acien A; Sandford A; Elliott M; Singh A; Chen L; Zhuang X; Hogg J; Pare P; Tuder RM; Biswal S
    Am J Respir Crit Care Med; 2008 Sep; 178(6):592-604. PubMed ID: 18556627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated plasma levels of pigment epithelium-derived factor correlated with inflammation and lung function in COPD patients.
    Li X; Wang T; Yang T; Shen Y; An J; Liu L; Dong J; Guo L; Li D; Zhang X; Chen L; Xu D; Wen F
    Int J Chron Obstruct Pulmon Dis; 2015; 10():587-94. PubMed ID: 25844034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Innate Immunity and Cell Surface Receptors in the Pathogenesis of COPD: Insights from Mouse Smoking Models.
    De Cunto G; Cavarra E; Bartalesi B; Lucattelli M; Lungarella G
    Int J Chron Obstruct Pulmon Dis; 2020; 15():1143-1154. PubMed ID: 32547002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease.
    Yao H; Rahman I
    Toxicol Appl Pharmacol; 2011 Jul; 254(2):72-85. PubMed ID: 21296096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.