These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 20496362)
21. Synthesis and tubulin-binding properties of new allocolchicinoids. Boyer FD; Dubois J; Thoret S; Dau ME; Hanna I Bioorg Chem; 2010 Aug; 38(4):149-58. PubMed ID: 20359734 [TBL] [Abstract][Full Text] [Related]
22. Indole, a core nucleus for potent inhibitors of tubulin polymerization. Brancale A; Silvestri R Med Res Rev; 2007 Mar; 27(2):209-38. PubMed ID: 16788980 [TBL] [Abstract][Full Text] [Related]
23. Synthesis, modelling, and antimitotic properties of tricyclic systems characterised by a 2-(5-Phenyl-1H-pyrrol-3-yl)-1,3,4-oxadiazole moiety. Pinna GA; Murineddu G; Murruzzu C; Zuco V; Zunino F; Cappelletti G; Artali R; Cignarella G; Solano L; Villa S ChemMedChem; 2009 Jun; 4(6):998-1009. PubMed ID: 19291736 [TBL] [Abstract][Full Text] [Related]
24. Structural basis for the regulation of tubulin by vinblastine. Gigant B; Wang C; Ravelli RB; Roussi F; Steinmetz MO; Curmi PA; Sobel A; Knossow M Nature; 2005 May; 435(7041):519-22. PubMed ID: 15917812 [TBL] [Abstract][Full Text] [Related]
25. Novel potent antimitotic heterocyclic ketones: synthesis, antiproliferative activity, and structure-activity relationships. Hu L; Jiang JD; Qu J; Li Y; Jin J; Li ZR; Boykin DW Bioorg Med Chem Lett; 2007 Jul; 17(13):3613-7. PubMed ID: 17482458 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of antimitotic agents by quantitative comparisons of their effects on the polymerization of purified tubulin. Hamel E Cell Biochem Biophys; 2003; 38(1):1-22. PubMed ID: 12663938 [TBL] [Abstract][Full Text] [Related]
27. Synthesis of novel diaryl ethers and their evaluation as antimitotic agents. In JK; Lee MS; Yang JE; Kwak JH; Lee H; Boovanahalli SK; Lee K; Kim SJ; Moon SK; Lee S; Choi NS; Ahn SK; Jung JK Bioorg Med Chem Lett; 2007 Mar; 17(6):1799-802. PubMed ID: 17276056 [TBL] [Abstract][Full Text] [Related]
31. Antimitotic and antiproliferative activities of chalcones: forward structure-activity relationship. Boumendjel A; Boccard J; Carrupt PA; Nicolle E; Blanc M; Geze A; Choisnard L; Wouessidjewe D; Matera EL; Dumontet C J Med Chem; 2008 Apr; 51(7):2307-10. PubMed ID: 18293907 [TBL] [Abstract][Full Text] [Related]
32. 7,11-epi-thyrsiferol: completion of its synthesis, evaluation of its antimitotic properties, and the further development of an SAR model. Nishiguchi GA; Graham J; Bouraoui A; Jacobs RS; Little RD J Org Chem; 2006 Aug; 71(16):5936-41. PubMed ID: 16872175 [TBL] [Abstract][Full Text] [Related]
33. Probing interactions of tubulin with small molecules, peptides, and protein fragments by solution nuclear magnetic resonance. Clément MJ; Savarin P; Adjadj E; Sobel A; Toma F; Curmi PA Methods Cell Biol; 2010; 95():407-47. PubMed ID: 20466147 [TBL] [Abstract][Full Text] [Related]
34. Synthesis and antimitotic activity of novel 2-methoxyestradiol analogs--Part II. Rao PN; Cessac JW; Boyd JW; Hanson AD; Shah J Steroids; 2008 Feb; 73(2):158-70. PubMed ID: 18155740 [TBL] [Abstract][Full Text] [Related]
35. Binding and interaction of dinitroanilines with apicomplexan and kinetoplastid alpha-tubulin. Mitra A; Sept D J Med Chem; 2006 Aug; 49(17):5226-31. PubMed ID: 16913711 [TBL] [Abstract][Full Text] [Related]
36. A common pharmacophore for a diverse set of colchicine site inhibitors using a structure-based approach. Nguyen TL; McGrath C; Hermone AR; Burnett JC; Zaharevitz DW; Day BW; Wipf P; Hamel E; Gussio R J Med Chem; 2005 Sep; 48(19):6107-16. PubMed ID: 16162011 [TBL] [Abstract][Full Text] [Related]
37. Synthesis and activity of novel analogs of hemiasterlin as inhibitors of tubulin polymerization: modification of the A segment. Yamashita A; Norton EB; Kaplan JA; Niu C; Loganzo F; Hernandez R; Beyer CF; Annable T; Musto S; Discafani C; Zask A; Ayral-Kaloustian S Bioorg Med Chem Lett; 2004 Nov; 14(21):5317-22. PubMed ID: 15454219 [TBL] [Abstract][Full Text] [Related]
38. Histone deacetylase and microtubules as targets for the synthesis of releasable conjugate compounds. Passarella D; Comi D; Vanossi A; Paganini G; Colombo F; Ferrante L; Zuco V; Danieli B; Zunino F Bioorg Med Chem Lett; 2009 Nov; 19(22):6358-63. PubMed ID: 19833515 [TBL] [Abstract][Full Text] [Related]
39. Role of the membrane interface on the conformation of the caveolin scaffolding domain: a CD and NMR study. Le Lan C; Neumann JM; Jamin N FEBS Lett; 2006 Oct; 580(22):5301-5. PubMed ID: 16979631 [TBL] [Abstract][Full Text] [Related]
40. First total synthesis of tubulysin B. Pando O; Dörner S; Preusentanz R; Denkert A; Porzel A; Richter W; Wessjohann L Org Lett; 2009 Dec; 11(24):5567-9. PubMed ID: 19919080 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]