These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 20496893)

  • 21. Synthesis and magnetic properties of FePt nanoparticles with hard nonmagnetic shells.
    Kang S; Shi S; Miao GX; Jia Z; Nikles DE; Harrell JW
    J Nanosci Nanotechnol; 2007 Jan; 7(1):350-5. PubMed ID: 17455503
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures.
    Peng Z; Yang H
    J Am Chem Soc; 2009 Jun; 131(22):7542-3. PubMed ID: 19438286
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pt monolayer on porous Pd-Cu alloys as oxygen reduction electrocatalysts.
    Shao M; Shoemaker K; Peles A; Kaneko K; Protsailo L
    J Am Chem Soc; 2010 Jul; 132(27):9253-5. PubMed ID: 20565078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tuning nanoparticle structure and surface strain for catalysis optimization.
    Zhang S; Zhang X; Jiang G; Zhu H; Guo S; Su D; Lu G; Sun S
    J Am Chem Soc; 2014 May; 136(21):7734-9. PubMed ID: 24803093
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimizing core-shell nanoparticle catalysts with a genetic algorithm.
    Froemming NS; Henkelman G
    J Chem Phys; 2009 Dec; 131(23):234103. PubMed ID: 20025310
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pt@Pd(x)Cu(y)/C core-shell electrocatalysts for oxygen reduction reaction in fuel cells.
    Cochell T; Manthiram A
    Langmuir; 2012 Jan; 28(2):1579-87. PubMed ID: 22149212
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multifunctional yolk-shell nanoparticles: a potential MRI contrast and anticancer agent.
    Gao J; Liang G; Cheung JS; Pan Y; Kuang Y; Zhao F; Zhang B; Zhang X; Wu EX; Xu B
    J Am Chem Soc; 2008 Sep; 130(35):11828-33. PubMed ID: 18681432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction.
    Shao MH; Huang T; Liu P; Zhang J; Sasaki K; Vukmirovic MB; Adzic RR
    Langmuir; 2006 Dec; 22(25):10409-15. PubMed ID: 17129009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pd-Co-Mo electrocatalyst for the oxygen reduction reaction in proton exchange membrane fuel cells.
    Raghuveer V; Manthiram A; Bard AJ
    J Phys Chem B; 2005 Dec; 109(48):22909-12. PubMed ID: 16853984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FePt@CoS(2) yolk-shell nanocrystals as a potent agent to kill HeLa cells.
    Gao J; Liang G; Zhang B; Kuang Y; Zhang X; Xu B
    J Am Chem Soc; 2007 Feb; 129(5):1428-33. PubMed ID: 17263428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlling core/shell Au/FePt nanoparticle electrocatalysis via changing the core size and shell thickness.
    Sun X; Li D; Guo S; Zhu W; Sun S
    Nanoscale; 2016 Feb; 8(5):2626-31. PubMed ID: 26676367
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Iridium-decorated palladium-platinum core-shell catalysts for oxygen reduction reaction in proton exchange membrane fuel cell.
    Wang CH; Hsu HC; Wang KC
    J Colloid Interface Sci; 2014 Aug; 427():91-7. PubMed ID: 24388448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rh-Pt bimetallic catalysts: synthesis, characterization, and catalysis of core-shell, alloy, and monometallic nanoparticles.
    Alayoglu S; Eichhorn B
    J Am Chem Soc; 2008 Dec; 130(51):17479-86. PubMed ID: 19049272
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles.
    Sun D; Mazumder V; Metin Ö; Sun S
    ACS Nano; 2011 Aug; 5(8):6458-64. PubMed ID: 21766875
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles.
    Sánchez-Sánchez CM; Solla-Gullón J; Vidal-Iglesias FJ; Aldaz A; Montiel V; Herrero E
    J Am Chem Soc; 2010 Apr; 132(16):5622-4. PubMed ID: 20359217
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Platinum-monolayer shell on AuNi(0.5)Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction.
    Gong K; Su D; Adzic RR
    J Am Chem Soc; 2010 Oct; 132(41):14364-6. PubMed ID: 20873798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlled co-deposition of FePt nanoparticles embedded in MgO: a detailed investigation of structure and electronic and magnetic properties.
    D'Addato S; Grillo V; di Bona A; Luches P; Frabboni S; Valeri S; Lupo P; Casoli F; Albertini F
    Nanotechnology; 2013 Dec; 24(49):495703. PubMed ID: 24231177
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of different platinum precursors on the formation and reaction mechanism of FePt nanoparticles and their electrocatalytic performance towards methanol oxidation.
    Sahu NK; Prakash A; Bahadur D
    Dalton Trans; 2014 Mar; 43(12):4892-900. PubMed ID: 24492706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of magnetic nanocomposites and alloys from platinum-iron oxide core-shell nanoparticles.
    Teng X; Yang H
    Nanotechnology; 2005 Jul; 16(7):S554-61. PubMed ID: 21727477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanocatalyst superior to Pt for oxygen reduction reactions: the case of core/shell Ag(Au)/CuPd nanoparticles.
    Guo S; Zhang X; Zhu W; He K; Su D; Mendoza-Garcia A; Ho SF; Lu G; Sun S
    J Am Chem Soc; 2014 Oct; 136(42):15026-33. PubMed ID: 25279704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.