BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 20496947)

  • 1. Vinyl sulfone bifunctional tag reagents for single-point modification of proteins.
    Morales-Sanfrutos J; Lopez-Jaramillo FJ; Hernandez-Mateo F; Santoyo-Gonzalez F
    J Org Chem; 2010 Jun; 75(12):4039-47. PubMed ID: 20496947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of two novel tag-based labelling technologies for site-specific modification of proteins.
    Tirat A; Freuler F; Stettler T; Mayr LM; Leder L
    Int J Biol Macromol; 2006 Aug; 39(1-3):66-76. PubMed ID: 16503347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vinyl sulfone functionalization: a feasible approach for the study of the lectin-carbohydrate interactions.
    Lopez-Jaramillo FJ; Ortega-Muñoz M; Megia-Fernandez A; Hernandez-Mateo F; Santoyo-Gonzalez F
    Bioconjug Chem; 2012 Apr; 23(4):846-55. PubMed ID: 22432968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and photoactivation of caged fluorophores and caged proteins using a new class of heterobifunctional, photocleavable cross-linking reagents.
    Ottl J; Gabriel D; Marriott G
    Bioconjug Chem; 1998; 9(2):143-51. PubMed ID: 9548528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective cross-linking of interacting proteins using self-labeling tags.
    Gautier A; Nakata E; Lukinavicius G; Tan KT; Johnsson K
    J Am Chem Soc; 2009 Dec; 131(49):17954-62. PubMed ID: 19916541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic study of protein labeling by fluorogenic probes using cysteine targeting vinyl sulfone-cyclooctyne tags.
    Söveges B; Imre T; Szende T; Póti ÁL; Cserép GB; Hegedűs T; Kele P; Németh K
    Org Biomol Chem; 2016 Jul; 14(25):6071-8. PubMed ID: 27244693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vinyl sulfone: a versatile function for simple bioconjugation and immobilization.
    Morales-Sanfrutos J; Lopez-Jaramillo J; Ortega-Muñoz M; Megia-Fernandez A; Perez-Balderas F; Hernandez-Mateo F; Santoyo-Gonzalez F
    Org Biomol Chem; 2010 Feb; 8(3):667-75. PubMed ID: 20090986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of drug/dye-incorporated polymer-protein hybrids.
    Dolai S; Shi W; Mondal B; Raja K
    Methods Mol Biol; 2011; 751():29-42. PubMed ID: 21674323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bifunctional Diaminoterephthalate Fluorescent Dye as Probe for Cross-Linking Proteins.
    Wallisch M; Sulmann S; Koch KW; Christoffers J
    Chemistry; 2017 May; 23(27):6535-6543. PubMed ID: 28277609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Affinity-labeling-based introduction of a reactive handle for natural protein modification.
    Wakabayashi H; Miyagawa M; Koshi Y; Takaoka Y; Tsukiji S; Hamachi I
    Chem Asian J; 2008 Jul; 3(7):1134-9. PubMed ID: 18494012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rapid synthesis of the biotin core through a tandem Michael reaction.
    Oh K
    Org Lett; 2007 Aug; 9(16):2973-5. PubMed ID: 17602641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct vinylation and difluorovinylation of arylboronic acids using vinyl- and 2,2-difluorovinyl tosylates via the Suzuki-Miyaura cross coupling.
    Gøgsig TM; Søbjerg LS; Lindhardt AT; Jensen KL; Skrydstrup T
    J Org Chem; 2008 May; 73(9):3404-10. PubMed ID: 18380442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The AviD-tag, a NeutrAvidin/avidin specific peptide affinity tag for the immobilization and purification of recombinant proteins.
    Gaj T; Meyer SC; Ghosh I
    Protein Expr Purif; 2007 Nov; 56(1):54-61. PubMed ID: 17697784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre- and postfunctionalized self-assembled π-conjugated fluorescent organic nanoparticles for dual targeting.
    Petkau K; Kaeser A; Fischer I; Brunsveld L; Schenning AP
    J Am Chem Soc; 2011 Oct; 133(42):17063-71. PubMed ID: 21913650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring protein-polymer conjugation by a fluorogenic Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition.
    Dirks AT; Cornelissen JJ; Nolte RJ
    Bioconjug Chem; 2009 Jun; 20(6):1129-38. PubMed ID: 19453101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential ordering among multicolor fluorophores for protein labeling facility via aggregation-elimination based β-lactam probes.
    Sadhu KK; Mizukami S; Watanabe S; Kikuchi K
    Mol Biosyst; 2011 May; 7(5):1766-72. PubMed ID: 21431174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convenient modular method for affinity labeling (MoAL method) based on a catalytic amidation.
    Kunishima M; Nakanishi S; Nishida J; Tanaka H; Morisaki D; Hioki K; Nomoto H
    Chem Commun (Camb); 2009 Oct; (37):5597-9. PubMed ID: 19753369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-terminal labeling of proteins using initiator tRNA.
    Olejnik J; Gite S; Mamaev S; Rothschild KJ
    Methods; 2005 Jul; 36(3):252-60. PubMed ID: 16076451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A coumarin-labeled vinyl sulfone as tripeptidomimetic activity-based probe for cysteine cathepsins.
    Mertens MD; Schmitz J; Horn M; Furtmann N; Bajorath J; Mareš M; Gütschow M
    Chembiochem; 2014 May; 15(7):955-9. PubMed ID: 24648212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A site-specific bifunctional protein labeling system for affinity and fluorescent analysis.
    Shute TS; Matsushita M; Dickerson TJ; La Clair JJ; Janda KD; Burkart MD
    Bioconjug Chem; 2005; 16(6):1352-5. PubMed ID: 16287229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.