BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 20496949)

  • 1. Production of 18O-single labeled peptide fragments during trypsin digestion of proteins for quantitative proteomics using nanoLC-ESI-MS/MS.
    Mori M; Abe K; Yamaguchi H; Goto J; Shimada M; Mano N
    J Proteome Res; 2010 Jul; 9(7):3741-9. PubMed ID: 20496949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-digestion ¹⁸O exchange/labeling for quantitative shotgun proteomics of membrane proteins.
    Ye X; Luke BT; Johann DJ; Chan KC; Prieto DA; Ono A; Veenstra TD; Blonder J
    Methods Mol Biol; 2012; 893():223-40. PubMed ID: 22665304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescein as a versatile tag for enhanced selectivity in analyzing cysteine-containing proteins/peptides using mass spectrometry.
    Chen SH; Hsu JL; Lin FS
    Anal Chem; 2008 Jul; 80(13):5251-9. PubMed ID: 18512949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Verification of protein disulfide bond arrangement by in-gel tryptic digestion under entirely neutral pH conditions.
    Saito K; Yasuo I; Uchimura H; Koide-Yoshida S; Mizuguchi T; Kiso Y
    Proteomics; 2010 Apr; 10(7):1505-9. PubMed ID: 20127682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative carbamylation as a stable isotopic labeling method for comparative proteomics.
    Angel PM; Orlando R
    Rapid Commun Mass Spectrom; 2007; 21(10):1623-34. PubMed ID: 17465008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization and quality assessment of the post-digestion 18O labeling based on urea for protein denaturation by HPLC/ESI-TOF mass spectrometry.
    Wang H; Hu G; Zhang Y; Yuan Z; Zhao X; Zhu Y; Cai D; Li Y; Xiao S; Deng Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Jul; 878(22):1946-52. PubMed ID: 20576474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative proteomics using 16O/18O labeling and linear ion trap mass spectrometry.
    López-Ferrer D; Ramos-Fernández A; Martínez-Bartolomé S; García-Ruiz P; Vázquez J
    Proteomics; 2006 Apr; 6 Suppl 1():S4-11. PubMed ID: 16534745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of improved (18)O incorporation and multiple reaction monitoring: a universal strategy for absolute quantitative verification of serum candidate biomarkers of liver cancer.
    Zhao Y; Jia W; Sun W; Jin W; Guo L; Wei J; Ying W; Zhang Y; Xie Y; Jiang Y; He F; Qian X
    J Proteome Res; 2010 Jun; 9(6):3319-27. PubMed ID: 20420461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trypsin catalyzed 16O-to-18O exchange for comparative proteomics: tandem mass spectrometry comparison using MALDI-TOF, ESI-QTOF, and ESI-ion trap mass spectrometers.
    Heller M; Mattou H; Menzel C; Yao X
    J Am Soc Mass Spectrom; 2003 Jul; 14(7):704-18. PubMed ID: 12837592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protease-catalyzed incorporation of 18O into peptide fragments and its application for protein sequencing by electrospray and matrix-assisted laser desorption/ionization mass spectrometry.
    Schnölzer M; Jedrzejewski P; Lehmann WD
    Electrophoresis; 1996 May; 17(5):945-53. PubMed ID: 8783021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteolytic labeling with 18O for comparative proteomics studies: preparation of 18O-labeled peptides and the 18O/16O peptide mixture.
    Fenselau C; Yao X
    Methods Mol Biol; 2007; 359():135-42. PubMed ID: 17484115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 18O-labeling quantitative proteomics using an ion trap mass spectrometer.
    Sakai J; Kojima S; Yanagi K; Kanaoka M
    Proteomics; 2005 Jan; 5(1):16-23. PubMed ID: 15744833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-gel-based dual 18O labeling quantitative proteomics strategy.
    Liu H; Zhang Y; Meng L; Qin P; Wei J; Jia W; Li X; Cai Y; Qian X
    Anal Chem; 2007 Oct; 79(20):7700-7. PubMed ID: 17867651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted comparative proteomics by liquid chromatography/matrix-assisted laser desorption/ionization triple-quadrupole mass spectrometry.
    Melanson JE; Chisholm KA; Pinto DM
    Rapid Commun Mass Spectrom; 2006; 20(5):904-10. PubMed ID: 16470697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerated 18O-labeling in urinary proteomics.
    Loftheim H; Asberg A; Reubsaet L
    J Chromatogr A; 2010 Dec; 1217(52):8241-8. PubMed ID: 21094492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Markov-chain-based heteroscedastic regression model for the analysis of high-resolution enzymatically 18O-labeled mass spectra.
    Zhu Q; Valkenborg D; Burzykowski T
    J Proteome Res; 2010 May; 9(5):2669-77. PubMed ID: 20329753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass spectrum patterns of 18O-tagged peptides labeled by enzyme-catalyzed oxygen exchange.
    Fernandez-de-Cossio J
    Anal Chem; 2011 Apr; 83(8):2890-6. PubMed ID: 21417365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential proteomics based on 18O labeling to determine the cyclin dependent kinase 9 interactome.
    Bezstarosti K; Ghamari A; Grosveld FG; Demmers JA
    J Proteome Res; 2010 Sep; 9(9):4464-75. PubMed ID: 20593818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing biological variation and protein processing in primary human leukocytes by automated multiplex stable isotope labeling coupled to 2 dimensional peptide separation.
    Raijmakers R; Heck AJ; Mohammed S
    Mol Biosyst; 2009 Sep; 5(9):992-1003. PubMed ID: 19668865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new sample preparation method for the absolute quantitation of a target proteome using (18)O labeling combined with multiple reaction monitoring mass spectrometry.
    Li J; Zhou L; Wang H; Yan H; Li N; Zhai R; Jiao F; Hao F; Jin Z; Tian F; Peng B; Zhang Y; Qian X
    Analyst; 2015 Feb; 140(4):1281-90. PubMed ID: 25568899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.