BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 20497159)

  • 1. In vitro and computational thrombosis on artificial surfaces with shear stress.
    Corbett SC; Ajdari A; Coskun AU; N-Hashemi H
    Artif Organs; 2010 Jul; 34(7):561-9. PubMed ID: 20497159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro, computational, and in vivo thrombosis.
    Wiwanitkit V
    Artif Organs; 2010 Oct; 34(10):862; author reply 862. PubMed ID: 20964700
    [No Abstract]   [Full Text] [Related]  

  • 3. Hemocompatibility evaluation with experimental and computational fluid dynamic analyses for a monopivot circulatory assist pump.
    Nishida M; Maruyama O; Kosaka R; Yamane T; Kogure H; Kawamura H; Yamamoto Y; Kuwana K; Sankai Y; Tsutsui T
    Artif Organs; 2009 Apr; 33(4):378-86. PubMed ID: 19335415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pulsatile blood flow on thrombosis potential with a step wall transition.
    Corbett SC; Ajdari A; Coskun AU; Nayeb-Hashemi H
    ASAIO J; 2010; 56(4):290-5. PubMed ID: 20508499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro quantification of time dependent thrombus size using magnetic resonance imaging and computational simulations of thrombus surface shear stresses.
    Taylor JO; Witmer KP; Neuberger T; Craven BA; Meyer RS; Deutsch S; Manning KB
    J Biomech Eng; 2014 Jul; 136(7):. PubMed ID: 24805351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of enzyme activated milk for in vitro simulation of prosthetic valve thrombosis.
    Keggen LA; Black MM; Lawford PV; Hose DR; Strachan JR
    J Heart Valve Dis; 1996 Jan; 5(1):74-83. PubMed ID: 8834729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microscopic investigation of erythrocyte deformation dynamics.
    Zhao R; Antaki JF; Naik T; Bachman TN; Kameneva MV; Wu ZJ
    Biorheology; 2006; 43(6):747-65. PubMed ID: 17148857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of thrombus formation in shear flows using Lattice Boltzmann Method.
    Tamagawa M; Kaneda H; Hiramoto M; Nagahama S
    Artif Organs; 2009 Aug; 33(8):604-10. PubMed ID: 19624585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic determination of clot deposition rates in a milk-based, in-vitro procedure for thrombogenicity assessment.
    Christy JR; Marosek KW
    J Heart Valve Dis; 2000 May; 9(3):379-88. PubMed ID: 10888095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonthrombogenic, adhesive cellular lining for left ventricular assist devices.
    Scott-Burden T; Tock CL; Bosely JP; Clubb FJ; Parnis SM; Schwarz JJ; Engler DA; Frazier OH; Casscells SW
    Circulation; 1998 Nov; 98(19 Suppl):II339-45. PubMed ID: 9852924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the relative importance of rheology for image-based CFD models of the carotid bifurcation.
    Lee SW; Steinman DA
    J Biomech Eng; 2007 Apr; 129(2):273-8. PubMed ID: 17408332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Threshold response of initiation of blood coagulation by tissue factor in patterned microfluidic capillaries is controlled by shear rate.
    Shen F; Kastrup CJ; Liu Y; Ismagilov RF
    Arterioscler Thromb Vasc Biol; 2008 Nov; 28(11):2035-41. PubMed ID: 18703776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical degradation of polyacrylamide solutions as a model for flow induced blood damage in artificial organs.
    Pohl M; Wendt MO; Koch B; Vlastos GA
    Biorheology; 2000; 37(4):313-24. PubMed ID: 11145077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using a CFD model to understand the fluid dynamics promoting E. coli breakage in a high-pressure homogenizer.
    Miller J; Rogowski M; Kelly W
    Biotechnol Prog; 2002; 18(5):1060-7. PubMed ID: 12363358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational modeling of factor Xa inhibition by immobilized tissue factor pathway inhibitor.
    Tummala SR; Hall CL
    Ann Biomed Eng; 2007 Mar; 35(3):408-18. PubMed ID: 17219083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of shear rate on propagation of blood clotting determined using microfluidics and numerical simulations.
    Runyon MK; Kastrup CJ; Johnson-Kerner BL; Ha TG; Ismagilov RF
    J Am Chem Soc; 2008 Mar; 130(11):3458-64. PubMed ID: 18302373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights into pacemaker lead-induced venous occlusion: simulation-based investigation of alterations in venous biomechanics.
    Lonyai A; Dubin AM; Feinstein JA; Taylor CA; Shadden SC
    Cardiovasc Eng; 2010 Jun; 10(2):84-90. PubMed ID: 20514553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational fluid dynamics simulation of transcatheter aortic valve degeneration.
    Dwyer HA; Matthews PB; Azadani A; Jaussaud N; Ge L; Guy TS; Tseng EE
    Interact Cardiovasc Thorac Surg; 2009 Aug; 9(2):301-8. PubMed ID: 19414489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical mechanisms of thrombosis in intact bent microvessels of rat mesentery.
    Liu Q; Mirc D; Fu BM
    J Biomech; 2008 Aug; 41(12):2726-34. PubMed ID: 18656200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of platelet margination phenomena at elevated shear stress.
    Zhao R; Kameneva MV; Antaki JF
    Biorheology; 2007; 44(3):161-77. PubMed ID: 17851165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.