These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20497374)

  • 1. The metabolic transition during disease following infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato.
    Ward JL; Forcat S; Beckmann M; Bennett M; Miller SJ; Baker JM; Hawkins ND; Vermeer CP; Lu C; Lin W; Truman WM; Beale MH; Draper J; Mansfield JW; Grant M
    Plant J; 2010 Aug; 63(3):443-57. PubMed ID: 20497374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7.
    Thilmony R; Underwood W; He SY
    Plant J; 2006 Apr; 46(1):34-53. PubMed ID: 16553894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolomic analysis reveals the relationship between AZI1 and sugar signaling in systemic acquired resistance of Arabidopsis.
    Wang XY; Li DZ; Li Q; Ma YQ; Yao JW; Huang X; Xu ZQ
    Plant Physiol Biochem; 2016 Oct; 107():273-287. PubMed ID: 27337039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role for 3'-O-β-D-ribofuranosyladenosine in altering plant immunity.
    Drenichev MS; Bennett M; Novikov RA; Mansfield J; Smirnoff N; Grant M; Mikhailov SN
    Phytochemistry; 2019 Jan; 157():128-134. PubMed ID: 30399495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by pseudomonas syringae.
    Pavet V; Quintero C; Cecchini NM; Rosa AL; Alvarez ME
    Mol Plant Microbe Interact; 2006 Jun; 19(6):577-87. PubMed ID: 16776291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial non-host resistance: interactions of Arabidopsis with non-adapted Pseudomonas syringae strains.
    Mishina TE; Zeier J
    Physiol Plant; 2007 Nov; 131(3):448-61. PubMed ID: 18251883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diverse mechanisms of resistance to Pseudomonas syringae in a thousand natural accessions of Arabidopsis thaliana.
    Velásquez AC; Oney M; Huot B; Xu S; He SY
    New Phytol; 2017 Jun; 214(4):1673-1687. PubMed ID: 28295393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The downy mildew effector proteins ATR1 and ATR13 promote disease susceptibility in Arabidopsis thaliana.
    Sohn KH; Lei R; Nemri A; Jones JD
    Plant Cell; 2007 Dec; 19(12):4077-90. PubMed ID: 18165328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Erwinia amylovora avrRpt2EA gene contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in pseudomonas syringae.
    Zhao Y; He SY; Sundin GW
    Mol Plant Microbe Interact; 2006 Jun; 19(6):644-54. PubMed ID: 16776298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial and plant natriuretic peptides improve plant defence responses against pathogens.
    Ficarra FA; Grandellis C; Garavaglia BS; Gottig N; Ottado J
    Mol Plant Pathol; 2018 Apr; 19(4):801-811. PubMed ID: 28401640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance.
    Truman W; de Zabala MT; Grant M
    Plant J; 2006 Apr; 46(1):14-33. PubMed ID: 16553893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IDL6-HAE/HSL2 impacts pectin degradation and resistance to Pseudomonas syringae pv tomato DC3000 in Arabidopsis leaves.
    Wang X; Hou S; Wu Q; Lin M; Acharya BR; Wu D; Zhang W
    Plant J; 2017 Jan; 89(2):250-263. PubMed ID: 27618493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction and suppression of PEN3 focal accumulation during Pseudomonas syringae pv. tomato DC3000 infection of Arabidopsis.
    Xin XF; Nomura K; Underwood W; He SY
    Mol Plant Microbe Interact; 2013 Aug; 26(8):861-7. PubMed ID: 23815470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae.
    Laurie-Berry N; Joardar V; Street IH; Kunkel BN
    Mol Plant Microbe Interact; 2006 Jul; 19(7):789-800. PubMed ID: 16838791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The differential spatial distribution of secondary metabolites in Arabidopsis leaves reacting hypersensitively to Pseudomonas syringae pv. tomato is dependent on the oxidative burst.
    Simon C; Langlois-Meurinne M; Bellvert F; Garmier M; Didierlaurent L; Massoud K; Chaouch S; Marie A; Bodo B; Kauffmann S; Noctor G; Saindrenan P
    J Exp Bot; 2010 Jul; 61(12):3355-70. PubMed ID: 20530195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterologous expression of Chinese wild grapevine VqERFs in Arabidopsis thaliana enhance resistance to Pseudomonas syringae pv. tomato DC3000 and to Botrytis cinerea.
    Wang L; Liu W; Wang Y
    Plant Sci; 2020 Apr; 293():110421. PubMed ID: 32081269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of 3'-O-beta-D-ribofuranosyl adenosine during compatible, but not during incompatible, interactions of Arabidopsis thaliana or Lycopersicon esculentum with Pseudomonas syringae pathovar tomato.
    Bednarek P; Winter J; Hamberger B; Oldham NJ; Schneider B; Tan J; Hahlbrock K
    Planta; 2004 Feb; 218(4):668-72. PubMed ID: 14685856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A salicylic acid-induced lectin-like protein plays a positive role in the effector-triggered immunity response of Arabidopsis thaliana to Pseudomonas syringae Avr-Rpm1.
    Armijo G; Salinas P; Monteoliva MI; Seguel A; García C; Villarroel-Candia E; Song W; van der Krol AR; Álvarez ME; Holuigue L
    Mol Plant Microbe Interact; 2013 Dec; 26(12):1395-406. PubMed ID: 24006883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inositol hexakisphosphate biosynthesis underpins PAMP-triggered immunity to Pseudomonas syringae pv. tomato in Arabidopsis thaliana but is dispensable for establishment of systemic acquired resistance.
    Poon JSY; Le Fevre RE; Carr JP; Hanke DE; Murphy AM
    Mol Plant Pathol; 2020 Mar; 21(3):376-387. PubMed ID: 31876373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basal resistance against Pseudomonas syringae in Arabidopsis involves WRKY53 and a protein with homology to a nematode resistance protein.
    Murray SL; Ingle RA; Petersen LN; Denby KJ
    Mol Plant Microbe Interact; 2007 Nov; 20(11):1431-8. PubMed ID: 17977154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.