These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 20497374)
21. Inducible NAD overproduction in Arabidopsis alters metabolic pools and gene expression correlated with increased salicylate content and resistance to Pst-AvrRpm1. Pétriacq P; de Bont L; Hager J; Didierlaurent L; Mauve C; Guérard F; Noctor G; Pelletier S; Renou JP; Tcherkez G; Gakière B Plant J; 2012 May; 70(4):650-65. PubMed ID: 22268572 [TBL] [Abstract][Full Text] [Related]
22. Bacterial growth restriction during host resistance to Pseudomonas syringae is associated with leaf water loss and localized cessation of vascular activity in Arabidopsis thaliana. Freeman BC; Beattie GA Mol Plant Microbe Interact; 2009 Jul; 22(7):857-67. PubMed ID: 19522568 [TBL] [Abstract][Full Text] [Related]
23. Integration of targeted metabolome and transcript profiling of Pseudomonas syringae-triggered changes in defence-related phytochemicals in oat plants. Pretorius CJ; Dubery IA Planta; 2024 May; 260(1):8. PubMed ID: 38789631 [TBL] [Abstract][Full Text] [Related]
24. LOV-domain photoreceptor, encoded in a genomic island, attenuates the virulence of Pseudomonas syringae in light-exposed Arabidopsis leaves. Moriconi V; Sellaro R; Ayub N; Soto G; Rugnone M; Shah R; Pathak GP; Gärtner W; Casal JJ Plant J; 2013 Oct; 76(2):322-31. PubMed ID: 23865633 [TBL] [Abstract][Full Text] [Related]
25. HopA1 Effector from Dahale SK; Ghosh D; Ingole KD; Chugani A; Kim SH; Bhattacharjee S Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299060 [No Abstract] [Full Text] [Related]
26. Glycan-binding F-box protein from Arabidopsis thaliana protects plants from Pseudomonas syringae infection. Stefanowicz K; Lannoo N; Zhao Y; Eggermont L; Van Hove J; Al Atalah B; Van Damme EJ BMC Plant Biol; 2016 Oct; 16(1):213. PubMed ID: 27716048 [TBL] [Abstract][Full Text] [Related]
28. Visualization of dynamics of plant-pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. Berger S; Benediktyová Z; Matous K; Bonfig K; Mueller MJ; Nedbal L; Roitsch T J Exp Bot; 2007; 58(4):797-806. PubMed ID: 17138624 [TBL] [Abstract][Full Text] [Related]
29. Pseudomonas syringae elicits emission of the terpenoid (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene in Arabidopsis leaves via jasmonate signaling and expression of the terpene synthase TPS4. Attaran E; Rostás M; Zeier J Mol Plant Microbe Interact; 2008 Nov; 21(11):1482-97. PubMed ID: 18842097 [TBL] [Abstract][Full Text] [Related]
30. Measurement of Oxygen Status in Arabidopsis Leaves Undergoing the Hypersensitive Response During Pseudomonas Infection. Kumari A; Preston GM; Gupta KJ Methods Mol Biol; 2017; 1670():71-76. PubMed ID: 28871536 [TBL] [Abstract][Full Text] [Related]
31. Accumulation of soluble and wall-bound indolic metabolites in Arabidopsis thaliana leaves infected with virulent or avirulent Pseudomonas syringae pathovar tomato strains. Hagemeier J; Schneider B; Oldham NJ; Hahlbrock K Proc Natl Acad Sci U S A; 2001 Jan; 98(2):753-8. PubMed ID: 11136235 [TBL] [Abstract][Full Text] [Related]
32. Defence responses of Arabidopsis thaliana to infection by Pseudomonas syringae are regulated by the circadian clock. Bhardwaj V; Meier S; Petersen LN; Ingle RA; Roden LC PLoS One; 2011; 6(10):e26968. PubMed ID: 22066021 [TBL] [Abstract][Full Text] [Related]
33. The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity. Guo M; Tian F; Wamboldt Y; Alfano JR Mol Plant Microbe Interact; 2009 Sep; 22(9):1069-80. PubMed ID: 19656042 [TBL] [Abstract][Full Text] [Related]
34. A Method for Investigating the Pseudomonas syringae-Arabidopsis thaliana Pathosystem Under Various Light Environments. Leuchtman DL; Shumate AD; Gassmann W; Liscum E Methods Mol Biol; 2019; 1991():107-113. PubMed ID: 31041768 [TBL] [Abstract][Full Text] [Related]
35. The Pseudomonas syringae type III effector tyrosine phosphatase HopAO1 suppresses innate immunity in Arabidopsis thaliana. Underwood W; Zhang S; He SY Plant J; 2007 Nov; 52(4):658-72. PubMed ID: 17877704 [TBL] [Abstract][Full Text] [Related]
36. Specific changes in the Arabidopsis proteome in response to bacterial challenge: differentiating basal and R-gene mediated resistance. Jones AM; Thomas V; Truman B; Lilley K; Mansfield J; Grant M Phytochemistry; 2004 Jun; 65(12):1805-16. PubMed ID: 15276439 [TBL] [Abstract][Full Text] [Related]
37. The Pseudomonas syringae type III effector AvrRpt2 functions downstream or independently of SA to promote virulence on Arabidopsis thaliana. Chen Z; Kloek AP; Cuzick A; Moeder W; Tang D; Innes RW; Klessig DF; McDowell JM; Kunkel BN Plant J; 2004 Feb; 37(4):494-504. PubMed ID: 14756766 [TBL] [Abstract][Full Text] [Related]
38. Two serine residues in Pseudomonas syringae effector HopZ1a are required for acetyltransferase activity and association with the host co-factor. Ma KW; Jiang S; Hawara E; Lee D; Pan S; Coaker G; Song J; Ma W New Phytol; 2015 Dec; 208(4):1157-68. PubMed ID: 26103463 [TBL] [Abstract][Full Text] [Related]
40. Decreased abundance of type III secretion system-inducing signals in Arabidopsis mkp1 enhances resistance against Pseudomonas syringae. Anderson JC; Wan Y; Kim YM; Pasa-Tolic L; Metz TO; Peck SC Proc Natl Acad Sci U S A; 2014 May; 111(18):6846-51. PubMed ID: 24753604 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]