These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20497374)

  • 41. Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4.
    Schön M; Töller A; Diezel C; Roth C; Westphal L; Wiermer M; Somssich IE
    Mol Plant Microbe Interact; 2013 Jul; 26(7):758-67. PubMed ID: 23617415
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pseudomonas syringae infection triggers de novo synthesis of phytosphingosine from sphinganine in Arabidopsis thaliana.
    Peer M; Stegmann M; Mueller MJ; Waller F
    FEBS Lett; 2010 Sep; 584(18):4053-6. PubMed ID: 20732322
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Pseudomonas syringae type III effector HopD1 suppresses effector-triggered immunity, localizes to the endoplasmic reticulum, and targets the Arabidopsis transcription factor NTL9.
    Block A; Toruño TY; Elowsky CG; Zhang C; Steinbrenner J; Beynon J; Alfano JR
    New Phytol; 2014 Mar; 201(4):1358-1370. PubMed ID: 24329768
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Arabidopsis thaliana lectin receptor kinase LecRK-I.9 is required for full resistance to Pseudomonas syringae and affects jasmonate signalling.
    Balagué C; Gouget A; Bouchez O; Souriac C; Haget N; Boutet-Mercey S; Govers F; Roby D; Canut H
    Mol Plant Pathol; 2017 Sep; 18(7):937-948. PubMed ID: 27399963
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defence.
    Rajniak J; Barco B; Clay NK; Sattely ES
    Nature; 2015 Sep; 525(7569):376-9. PubMed ID: 26352477
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metabolite profiling reveals a role for intercellular dihydrocamalexic acid in the response of mature Arabidopsis thaliana to Pseudomonas syringae.
    Kempthorne CJ; Nielsen AJ; Wilson DC; McNulty J; Cameron RK; Liscombe DK
    Phytochemistry; 2021 Jul; 187():112747. PubMed ID: 33823457
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Direct infusion mass spectrometry of oxylipin-containing Arabidopsis membrane lipids reveals varied patterns in different stress responses.
    Vu HS; Tamura P; Galeva NA; Chaturvedi R; Roth MR; Williams TD; Wang X; Shah J; Welti R
    Plant Physiol; 2012 Jan; 158(1):324-39. PubMed ID: 22086419
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Arabidopsis flavin-dependent monooxygenase FMO1 is an essential component of biologically induced systemic acquired resistance.
    Mishina TE; Zeier J
    Plant Physiol; 2006 Aug; 141(4):1666-75. PubMed ID: 16778014
    [TBL] [Abstract][Full Text] [Related]  

  • 49. AtRbohF is a crucial modulator of defence-associated metabolism and a key actor in the interplay between intracellular oxidative stress and pathogenesis responses in Arabidopsis.
    Chaouch S; Queval G; Noctor G
    Plant J; 2012 Feb; 69(4):613-27. PubMed ID: 21985584
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Proteasome Acts as a Hub for Plant Immunity and Is Targeted by Pseudomonas Type III Effectors.
    Üstün S; Sheikh A; Gimenez-Ibanez S; Jones A; Ntoukakis V; Börnke F
    Plant Physiol; 2016 Nov; 172(3):1941-1958. PubMed ID: 27613851
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transgenic Arabidopsis thaliana containing increased levels of ATP and sucrose is more susceptible to Pseudomonas syringae.
    Zhang R; Qi H; Sun Y; Xiao S; Lim BL
    PLoS One; 2017; 12(2):e0171040. PubMed ID: 28152090
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nitrate reductase is required for the transcriptional modulation and bactericidal activity of nitric oxide during the defense response of Arabidopsis thaliana against Pseudomonas syringae.
    Vitor SC; Duarte GT; Saviani EE; Vincentz MG; Oliveira HC; Salgado I
    Planta; 2013 Sep; 238(3):475-86. PubMed ID: 23748675
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Salicylic Acid and Jasmonic Acid Pathways are Activated in Spatially Different Domains Around the Infection Site During Effector-Triggered Immunity in Arabidopsis thaliana.
    Betsuyaku S; Katou S; Takebayashi Y; Sakakibara H; Nomura N; Fukuda H
    Plant Cell Physiol; 2018 Jan; 59(1):8-16. PubMed ID: 29177423
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A key role for the Arabidopsis WIN3 protein in disease resistance triggered by Pseudomonas syringae that secrete AvrRpt2.
    Lee MW; Lu H; Jung HW; Greenberg JT
    Mol Plant Microbe Interact; 2007 Oct; 20(10):1192-200. PubMed ID: 17918621
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana.
    Brotman Y; Lisec J; Méret M; Chet I; Willmitzer L; Viterbo A
    Microbiology (Reading); 2012 Jan; 158(Pt 1):139-146. PubMed ID: 21852347
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pattern-Triggered Immunity Alters the Transcriptional Regulation of Virulence-Associated Genes and Induces the Sulfur Starvation Response in Pseudomonas syringae pv. tomato DC3000.
    Lovelace AH; Smith A; Kvitko BH
    Mol Plant Microbe Interact; 2018 Jul; 31(7):750-765. PubMed ID: 29460676
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Pseudomonas syringae effector HopF2 suppresses Arabidopsis immunity by targeting BAK1.
    Zhou J; Wu S; Chen X; Liu C; Sheen J; Shan L; He P
    Plant J; 2014 Jan; 77(2):235-45. PubMed ID: 24237140
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Light conditions influence specific defence responses in incompatible plant-pathogen interactions: uncoupling systemic resistance from salicylic acid and PR-1 accumulation.
    Zeier J; Pink B; Mueller MJ; Berger S
    Planta; 2004 Aug; 219(4):673-83. PubMed ID: 15098125
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pseudomonas syringae Effector Avirulence Protein E Localizes to the Host Plasma Membrane and Down-Regulates the Expression of the NONRACE-SPECIFIC DISEASE RESISTANCE1/HARPIN-INDUCED1-LIKE13 Gene Required for Antibacterial Immunity in Arabidopsis.
    Xin XF; Nomura K; Ding X; Chen X; Wang K; Aung K; Uribe F; Rosa B; Yao J; Chen J; He SY
    Plant Physiol; 2015 Sep; 169(1):793-802. PubMed ID: 26206852
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bacillus cereus AR156 Activates Defense Responses to Pseudomonas syringae pv. tomato in Arabidopsis thaliana Similarly to flg22.
    Wang S; Zheng Y; Gu C; He C; Yang M; Zhang X; Guo J; Zhao H; Niu D
    Mol Plant Microbe Interact; 2018 Mar; 31(3):311-322. PubMed ID: 29090631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.