These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20497374)

  • 61. Lipopolysaccharide perception in Arabidopsis thaliana: Diverse LPS chemotypes from Burkholderia cepacia, Pseudomonas syringae and Xanthomonas campestris trigger differential defence-related perturbations in the metabolome.
    Tinte MM; Steenkamp PA; Piater LA; Dubery IA
    Plant Physiol Biochem; 2020 Nov; 156():267-277. PubMed ID: 32987257
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Arabidopsis clade I TGA factors regulate apoplastic defences against the bacterial pathogen Pseudomonas syringae through endoplasmic reticulum-based processes.
    Wang L; Fobert PR
    PLoS One; 2013; 8(9):e77378. PubMed ID: 24086773
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Gene networks underlying the early regulation of Paraburkholderia phytofirmans PsJN induced systemic resistance in Arabidopsis.
    Timmermann T; Poupin MJ; Vega A; Urrutia C; Ruz GA; González B
    PLoS One; 2019; 14(8):e0221358. PubMed ID: 31437216
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Thienopyrimidine-type compounds protect Arabidopsis plants against the hemibiotrophic fungal pathogen Colletotrichum higginsianum and bacterial pathogen Pseudomonas syringae pv. maculicola.
    Narusaka M; Narusaka Y
    Plant Signal Behav; 2017 Mar; 12(3):e1293222. PubMed ID: 28277972
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The Pseudomonas syringae type III effector HopAM1 enhances virulence on water-stressed plants.
    Goel AK; Lundberg D; Torres MA; Matthews R; Akimoto-Tomiyama C; Farmer L; Dangl JL; Grant SR
    Mol Plant Microbe Interact; 2008 Mar; 21(3):361-70. PubMed ID: 18257685
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Dual metabolomics: a novel approach to understanding plant-pathogen interactions.
    Allwood JW; Clarke A; Goodacre R; Mur LA
    Phytochemistry; 2010 Apr; 71(5-6):590-7. PubMed ID: 20138320
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The Arabidopsis thaliana cysteine-rich receptor-like kinase CRK20 modulates host responses to Pseudomonas syringae pv. tomato DC3000 infection.
    Ederli L; Madeo L; Calderini O; Gehring C; Moretti C; Buonaurio R; Paolocci F; Pasqualini S
    J Plant Physiol; 2011 Oct; 168(15):1784-94. PubMed ID: 21742407
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The Pseudomonas syringae type III effector AvrRpt2 promotes virulence independently of RIN4, a predicted virulence target in Arabidopsis thaliana.
    Lim MT; Kunkel BN
    Plant J; 2004 Dec; 40(5):790-8. PubMed ID: 15546361
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Regulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance.
    Stahl E; Bellwon P; Huber S; Schlaeppi K; Bernsdorff F; Vallat-Michel A; Mauch F; Zeier J
    Mol Plant; 2016 May; 9(5):662-681. PubMed ID: 26802249
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dynamics of defense responses and cell fate change during Arabidopsis-Pseudomonas syringae interactions.
    Hamdoun S; Liu Z; Gill M; Yao N; Lu H
    PLoS One; 2013; 8(12):e83219. PubMed ID: 24349466
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Early changes in apoplast composition associated with defence and disease in interactions between Phaseolus vulgaris and the halo blight pathogen Pseudomonas syringae Pv. phaseolicola.
    O'Leary BM; Neale HC; Geilfus CM; Jackson RW; Arnold DL; Preston GM
    Plant Cell Environ; 2016 Oct; 39(10):2172-84. PubMed ID: 27239727
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Machine learning uncovers the
    Bajpe H; Rychel K; Lamoureux CR; Sastry AV; Palsson BO
    mSystems; 2023 Oct; 8(5):e0043723. PubMed ID: 37638727
    [No Abstract]   [Full Text] [Related]  

  • 73.
    Nobori T; Tsuda K
    Bio Protoc; 2018 Sep; 8(17):e2987. PubMed ID: 34395787
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Metabolic response of tomato leaves upon different plant-pathogen interactions.
    López-Gresa MP; Maltese F; Bellés JM; Conejero V; Kim HK; Choi YH; Verpoorte R
    Phytochem Anal; 2010; 21(1):89-94. PubMed ID: 19866456
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Metabolomics analysis identifies metabolites associated with systemic acquired resistance in Arabidopsis.
    Gao H; Zhou Q; Yang L; Zhang K; Ma Y; Xu ZQ
    PeerJ; 2020; 8():e10047. PubMed ID: 33062444
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Metabolomic Characterisation of Discriminatory Metabolites Involved in Halo Blight Disease in Oat Cultivars Caused by
    Pretorius CJ; Steenkamp PA; Tugizimana F; Piater LA; Dubery IA
    Metabolites; 2022 Mar; 12(3):. PubMed ID: 35323691
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Lipids associated with plant-bacteria interaction identified using a metabolomics approach in an
    Song JB; Huang RK; Guo MJ; Zhou Q; Guo R; Zhang SY; Yao JW; Bai YN; Huang X
    PeerJ; 2022; 10():e13293. PubMed ID: 35502205
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comparative metabolomic profiling of
    Tran TLC; Callahan DL; Islam MT; Wang Y; Arioli T; Cahill D
    Front Plant Sci; 2023; 14():1114172. PubMed ID: 36968386
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Metabolic profiling of Arabidopsis thaliana epidermal cells.
    Ebert B; Zöller D; Erban A; Fehrle I; Hartmann J; Niehl A; Kopka J; Fisahn J
    J Exp Bot; 2010 Mar; 61(5):1321-35. PubMed ID: 20150518
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Genetic Mapping of Tolerance to Bacterial Stem Blight Caused by
    Moya YS; Medina C; Herrera B; Chamba F; Yu LX; Xu Z; Samac DA
    Plants (Basel); 2023 Dec; 13(1):. PubMed ID: 38202418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.