BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 20497382)

  • 1. The small heat shock protein 20 RSI2 interacts with and is required for stability and function of tomato resistance protein I-2.
    Van Ooijen G; Lukasik E; Van Den Burg HA; Vossen JH; Cornelissen BJ; Takken FL
    Plant J; 2010 Aug; 63(4):563-72. PubMed ID: 20497382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat shock protein 90 and its co-chaperone protein phosphatase 5 interact with distinct regions of the tomato I-2 disease resistance protein.
    de la Fuente van Bentem S; Vossen JH; de Vries KJ; van Wees S; Tameling WI; Dekker HL; de Koster CG; Haring MA; Takken FL; Cornelissen BJ
    Plant J; 2005 Jul; 43(2):284-98. PubMed ID: 15998314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The MI-1-mediated pest resistance requires Hsp90 and Sgt1.
    Bhattarai KK; Li Q; Liu Y; Dinesh-Kumar SP; Kaloshian I
    Plant Physiol; 2007 May; 144(1):312-23. PubMed ID: 17351050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Random mutagenesis of the nucleotide-binding domain of NRC1 (NB-LRR Required for Hypersensitive Response-Associated Cell Death-1), a downstream signalling nucleotide-binding, leucine-rich repeat (NB-LRR) protein, identifies gain-of-function mutations in the nucleotide-binding pocket.
    Sueldo DJ; Shimels M; Spiridon LN; Caldararu O; Petrescu AJ; Joosten MH; Tameling WI
    New Phytol; 2015 Oct; 208(1):210-23. PubMed ID: 26009937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato.
    van den Burg HA; Tsitsigiannis DI; Rowland O; Lo J; Rallapalli G; Maclean D; Takken FL; Jones JD
    Plant Cell; 2008 Mar; 20(3):697-719. PubMed ID: 18375657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3.
    Schornack S; Ballvora A; Gürlebeck D; Peart J; Baulcombe D; Ganal M; Baker B; Bonas U; Lahaye T
    Plant J; 2004 Jan; 37(1):46-60. PubMed ID: 14675431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins.
    Gabriëls SH; Vossen JH; Ekengren SK; van Ooijen G; Abd-El-Haliem AM; van den Berg GC; Rainey DY; Martin GB; Takken FL; de Wit PJ; Joosten MH
    Plant J; 2007 Apr; 50(1):14-28. PubMed ID: 17346268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tomato I gene for Fusarium wilt resistance encodes an atypical leucine-rich repeat receptor-like protein whose function is nevertheless dependent on SOBIR1 and SERK3/BAK1.
    Catanzariti AM; Do HT; Bru P; de Sain M; Thatcher LF; Rep M; Jones DA
    Plant J; 2017 Mar; 89(6):1195-1209. PubMed ID: 27995670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The receptor-like kinase SlSERK1 is required for Mi-1-mediated resistance to potato aphids in tomato.
    Mantelin S; Peng HC; Li B; Atamian HS; Takken FL; Kaloshian I
    Plant J; 2011 Aug; 67(3):459-71. PubMed ID: 21481032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CDNA-AFLP combined with functional analysis reveals novel genes involved in the hypersensitive response.
    Gabriëls SH; Takken FL; Vossen JH; de Jong CF; Liu Q; Turk SC; Wachowski LK; Peters J; Witsenboer HM; de Wit PJ; Joosten MH
    Mol Plant Microbe Interact; 2006 Jun; 19(6):567-76. PubMed ID: 16776290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1.
    Bar M; Sharfman M; Ron M; Avni A
    Plant J; 2010 Sep; 63(5):791-800. PubMed ID: 20561260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SGT1 interacts with the Prf resistance protein and is required for Prf accumulation and Prf-mediated defense signaling.
    Kud J; Zhao Z; Du X; Liu Y; Zhao Y; Xiao F
    Biochem Biophys Res Commun; 2013 Feb; 431(3):501-5. PubMed ID: 23333384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endoplasmic reticulum-quality control chaperones facilitate the biogenesis of Cf receptor-like proteins involved in pathogen resistance of tomato.
    Liebrand TW; Smit P; Abd-El-Haliem A; de Jonge R; Cordewener JH; America AH; Sklenar J; Jones AM; Robatzek S; Thomma BP; Tameling WI; Joosten MH
    Plant Physiol; 2012 Aug; 159(4):1819-33. PubMed ID: 22649272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell death triggering and effector recognition by Sw-5 SD-CNL proteins from resistant and susceptible tomato isolines to Tomato spotted wilt virus.
    De Oliveira AS; Koolhaas I; Boiteux LS; Caldararu OF; Petrescu AJ; Oliveira Resende R; Kormelink R
    Mol Plant Pathol; 2016 Dec; 17(9):1442-1454. PubMed ID: 27271212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato.
    Hahn A; Bublak D; Schleiff E; Scharf KD
    Plant Cell; 2011 Feb; 23(2):741-55. PubMed ID: 21307284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The tomato calcium sensor Cbl10 and its interacting protein kinase Cipk6 define a signaling pathway in plant immunity.
    de la Torre F; Gutiérrez-Beltrán E; Pareja-Jaime Y; Chakravarthy S; Martin GB; del Pozo O
    Plant Cell; 2013 Jul; 25(7):2748-64. PubMed ID: 23903322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum.
    Zhang H; Zhang D; Chen J; Yang Y; Huang Z; Huang D; Wang XC; Huang R
    Plant Mol Biol; 2004 Aug; 55(6):825-34. PubMed ID: 15604719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regions of the Cf-9B disease resistance protein able to cause spontaneous necrosis in Nicotiana benthamiana lie within the region controlling pathogen recognition in tomato.
    Chakrabarti A; Panter SN; Harrison K; Jones JD; Jones DA
    Mol Plant Microbe Interact; 2009 Oct; 22(10):1214-26. PubMed ID: 19737095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR-mediated disease resistance in plants.
    Postma WJ; Slootweg EJ; Rehman S; Finkers-Tomczak A; Tytgat TO; van Gelderen K; Lozano-Torres JL; Roosien J; Pomp R; van Schaik C; Bakker J; Goverse A; Smant G
    Plant Physiol; 2012 Oct; 160(2):944-54. PubMed ID: 22904163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-protein interactions as a proxy to monitor conformational changes and activation states of the tomato resistance protein I-2.
    Lukasik-Shreepaathy E; Vossen JH; Tameling WI; de Vroomen MJ; Cornelissen BJ; Takken FL
    J Exp Bot; 2012 May; 63(8):3047-60. PubMed ID: 22345637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.