BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 20497547)

  • 1. Energy metabolism of Heliobacterium modesticaldum during phototrophic and chemotrophic growth.
    Tang KH; Yue H; Blankenship RE
    BMC Microbiol; 2010 May; 10():150. PubMed ID: 20497547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The genome of Heliobacterium modesticaldum, a phototrophic representative of the Firmicutes containing the simplest photosynthetic apparatus.
    Sattley WM; Madigan MT; Swingley WD; Cheung PC; Clocksin KM; Conrad AL; Dejesa LC; Honchak BM; Jung DO; Karbach LE; Kurdoglu A; Lahiri S; Mastrian SD; Page LE; Taylor HL; Wang ZT; Raymond J; Chen M; Blankenship RE; Touchman JW
    J Bacteriol; 2008 Jul; 190(13):4687-96. PubMed ID: 18441057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into heliobacterial photosynthesis and physiology from the genome of Heliobacterium modesticaldum.
    Sattley WM; Blankenship RE
    Photosynth Res; 2010 Jun; 104(2-3):113-22. PubMed ID: 20130998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Molecular Biology Tool Kit for the Phototrophic Firmicute Heliobacterium modesticaldum.
    Baker PL; Orf GS; Khan Z; Espinoza L; Leung S; Kevershan K; Redding KE
    Appl Environ Microbiol; 2019 Oct; 85(19):. PubMed ID: 31375483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of the cytochrome bc complex from Heliobacterium modesticaldum results in viable but non-phototrophic cells.
    Leung SW; Baker PL; Redding KE
    Photosynth Res; 2021 Jun; 148(3):137-152. PubMed ID: 34236566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic flux analysis of the mixotrophic metabolisms in the green sulfur bacterium Chlorobaculum tepidum.
    Feng X; Tang KH; Blankenship RE; Tang YJ
    J Biol Chem; 2010 Dec; 285(50):39544-50. PubMed ID: 20937805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus.
    Tang KH; Barry K; Chertkov O; Dalin E; Han CS; Hauser LJ; Honchak BM; Karbach LE; Land ML; Lapidus A; Larimer FW; Mikhailova N; Pitluck S; Pierson BK; Blankenship RE
    BMC Genomics; 2011 Jun; 12():334. PubMed ID: 21714912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Both forward and reverse TCA cycles operate in green sulfur bacteria.
    Tang KH; Blankenship RE
    J Biol Chem; 2010 Nov; 285(46):35848-54. PubMed ID: 20650900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Taxonomy, phylogeny, and ecology of the heliobacteria.
    Asao M; Madigan MT
    Photosynth Res; 2010 Jun; 104(2-3):103-11. PubMed ID: 20094790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic Evidence for Two Carbon Fixation Pathways (the Calvin-Benson-Bassham Cycle and the Reverse Tricarboxylic Acid Cycle) in Symbiotic and Free-Living Bacteria.
    Rubin-Blum M; Dubilier N; Kleiner M
    mSphere; 2019 Jan; 4(1):. PubMed ID: 30602523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of proteo-metabolome from Rubrivivax benzoatilyticus JA2 reveals a programmed switch-off of phototrophic growth, leading to a non-cultivable state as a hyperglycemic effect.
    Gupta D; Sasikala C; Ramana CV
    J Proteomics; 2022 May; 260():104569. PubMed ID: 35354086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heliobacteria Reveal Fermentation As a Key Pathway for Mercury Reduction in Anoxic Environments.
    Grégoire DS; Lavoie NC; Poulain AJ
    Environ Sci Technol; 2018 Apr; 52(7):4145-4153. PubMed ID: 29514452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of the low molecular mass ferredoxins involved in central metabolism in Heliomicrobium modesticaldum.
    Walters KA; Redding KE; Golbeck JH
    Photosynth Res; 2024 Feb; ():. PubMed ID: 38306001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of fluorescence in Heliobacterium modesticaldum cells.
    Collins AM; Redding KE; Blankenship RE
    Photosynth Res; 2010 Jun; 104(2-3):283-92. PubMed ID: 20461555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Carbon metabolism of filamentous anoxygenic phototrophic bacteria of the family Oscillochloridaceae].
    Berg IA; Keppen OI; Krasil'nikova EN; Ugol'kova NV; Ivanovskiĭ RN
    Mikrobiologiia; 2005; 74(3):305-12. PubMed ID: 16119842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examination of Genetic Control Elements in the Phototrophic Firmicute
    Layton AM; Redding KE
    Microorganisms; 2022 Apr; 10(5):. PubMed ID: 35630321
    [No Abstract]   [Full Text] [Related]  

  • 17. Stable isotope-assisted metabolite profiling reveals new insights into L-tryptophan chemotrophic metabolism of Rubrivivax benzoatilyticus.
    Ahmad S; Mohammed M; Mekala LP; Anusha R; Sasikala C; Ramana CV
    World J Microbiol Biotechnol; 2023 Feb; 39(4):98. PubMed ID: 36781830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Completion of biosynthetic pathways for bacteriochlorophyll g in Heliobacterium modesticaldum: The C8-ethylidene group formation.
    Tsukatani Y; Yamamoto H; Mizoguchi T; Fujita Y; Tamiaki H
    Biochim Biophys Acta; 2013 Oct; 1827(10):1200-4. PubMed ID: 23820336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications.
    Tang KH; Tang YJ; Blankenship RE
    Front Microbiol; 2011; 2():165. PubMed ID: 21866228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy generation.
    Dubbs JM; Tabita FR
    FEMS Microbiol Rev; 2004 Jun; 28(3):353-76. PubMed ID: 15449608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.