These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing. Tawfick S; O'Brien K; Hart AJ Small; 2009 Nov; 5(21):2467-73. PubMed ID: 19685444 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum. Fei S; Chen J; Yao S; Deng G; He D; Kuang Y Anal Biochem; 2005 Apr; 339(1):29-35. PubMed ID: 15766706 [TBL] [Abstract][Full Text] [Related]
10. Nanocomposite microstructures with tunable mechanical and chemical properties. Tawfick S; Deng X; Hart AJ; Lahann J Phys Chem Chem Phys; 2010 May; 12(17):4446-51. PubMed ID: 20407718 [TBL] [Abstract][Full Text] [Related]
11. Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects. Chiodarelli N; Masahito S; Kashiwagi Y; Li Y; Arstila K; Richard O; Cott DJ; Heyns M; De Gendt S; Groeseneken G; Vereecken PM Nanotechnology; 2011 Feb; 22(8):085302. PubMed ID: 21242623 [TBL] [Abstract][Full Text] [Related]
12. Catalytic functions of Mo/Ni/MgO in the synthesis of thin carbon nanotubes. Zhou LP; Ohta K; Kuroda K; Lei N; Matsuishi K; Gao L; Matsumoto T; Nakamura J J Phys Chem B; 2005 Mar; 109(10):4439-47. PubMed ID: 16851515 [TBL] [Abstract][Full Text] [Related]
13. Growth, new growth, and amplification of carbon nanotubes as a function of catalyst composition. Crouse CA; Maruyama B; Colorado R; Back T; Barron AR J Am Chem Soc; 2008 Jun; 130(25):7946-54. PubMed ID: 18507464 [TBL] [Abstract][Full Text] [Related]
14. Integration of a carbon nanotube based electrode in silicon microtechnology to fabricate electrochemical transducers. Luais E; Boujtita M; Gohier A; Tailleur A; Casimirius S; Djouadi MA; Granier A; Tessier PY Nanotechnology; 2008 Oct; 19(43):435502. PubMed ID: 21832696 [TBL] [Abstract][Full Text] [Related]
16. TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition. Chen X; Wang R; Xu J; Yu D Micron; 2004; 35(6):455-60. PubMed ID: 15120130 [TBL] [Abstract][Full Text] [Related]
17. In-flight kinetic measurements of the aerosol growth of carbon nanotubes by electrical mobility classification. Kim SH; Zachariah MR J Phys Chem B; 2006 Mar; 110(10):4555-62. PubMed ID: 16526684 [TBL] [Abstract][Full Text] [Related]
18. A self-assembled synthesis of carbon nanotubes for interconnects. Chen Z; Cao G; Lin Z; Koehler I; Bachmann PK Nanotechnology; 2006 Feb; 17(4):1062-6. PubMed ID: 21727382 [TBL] [Abstract][Full Text] [Related]
19. Abrasion as a catalyst deposition technique for carbon nanotube growth. Alvarez NT; Pint CL; Hauge RH; Tour JM J Am Chem Soc; 2009 Oct; 131(41):15041-8. PubMed ID: 19764728 [TBL] [Abstract][Full Text] [Related]
20. A study of Joule heating-induced breakdown of carbon nanotube interconnects. Santini CA; Vereecken PM; Volodin A; Groeseneken G; De Gendt S; Haesendonck CV Nanotechnology; 2011 Sep; 22(39):395202. PubMed ID: 21891859 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]