These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 20498525)

  • 21. Simulation of the electromechanical behavior of multiwall carbon nanotubes.
    Pantano A; Buongiorno Nardelli M
    ACS Nano; 2009 Oct; 3(10):3266-72. PubMed ID: 19772304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Horizontally aligned carbon nanotube bundles for interconnect application: diameter-dependent contact resistance and mean free path.
    Chai Y; Xiao Z; Chan PC
    Nanotechnology; 2010 Jun; 21(23):235705. PubMed ID: 20472947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A multiscale approach for modeling the early stage growth of single and multiwall carbon nanotubes produced by a metal-catalyzed synthesis process.
    Elliott JA; Hamm M; Shibuta Y
    J Chem Phys; 2009 Jan; 130(3):034704. PubMed ID: 19173534
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of catalysts and underlayer metals on the properties of PECVD-grown carbon nanostructures.
    Sun X; Li K; Wu R; Wilhite P; Saito T; Gao J; Yang CY
    Nanotechnology; 2010 Jan; 21(4):045201. PubMed ID: 20009172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemistry at carbon nanotubes: perspective and issues.
    Dumitrescu I; Unwin PR; Macpherson JV
    Chem Commun (Camb); 2009 Dec; (45):6886-901. PubMed ID: 19904345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct growth of aligned multiwalled carbon nanotubes on treated stainless steel substrates.
    Masarapu C; Wei B
    Langmuir; 2007 Aug; 23(17):9046-9. PubMed ID: 17637000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The fabrication of carbon-nanotube-coated electrodes and a field-emission-based luminescent device.
    Agarwal S; Yamini Sarada B; Kar KK
    Nanotechnology; 2010 Feb; 21(6):065601. PubMed ID: 20057034
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon nanotubes as a secondary support of a catalyst layer in a gas diffusion electrode for metal air batteries.
    Huang H; Zhang W; Li M; Gan Y; Chen J; Kuang Y
    J Colloid Interface Sci; 2005 Apr; 284(2):593-9. PubMed ID: 15780298
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition.
    Nessim GD
    Nanoscale; 2010 Aug; 2(8):1306-23. PubMed ID: 20820718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hierarchical multifunctional composites by conformally coating aligned carbon nanotube arrays with conducting polymer.
    Vaddiraju S; Cebeci H; Gleason KK; Wardle BL
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2565-72. PubMed ID: 20356128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Growth of carbon nanotubes on cobalt catalyst film using electron cyclotron resonance chemical vapour deposition without thermal heating.
    Wu WT; Chen KH; Hsu CM
    Nanotechnology; 2006 Sep; 17(18):4542-7. PubMed ID: 21727575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoscale discharge electrode for minimizing ozone emission from indoor corona devices.
    Bo Z; Yu K; Lu G; Mao S; Chen J; Fan FG
    Environ Sci Technol; 2010 Aug; 44(16):6337-42. PubMed ID: 20597541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method.
    Choi EC; Park YS; Hong B
    Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The use of microwave plasma-assisted CVD on nanostructured iron catalysts to grow isolated bundles of carbon nanotubes.
    Assouar MB; Dossot M; Rizk S; Tiusan C; Bougdira J
    Nanotechnology; 2010 Feb; 21(6):065708. PubMed ID: 20057030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ measurements on individual thin carbon nanotubes using nanomanipulators inside a scanning electron microscope.
    Wei X; Chen Q; Peng L; Cui R; Li Y
    Ultramicroscopy; 2010 Feb; 110(3):182-9. PubMed ID: 19962243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon nanotube/teflon composite electrochemical sensors and biosensors.
    Wang J; Musameh M
    Anal Chem; 2003 May; 75(9):2075-9. PubMed ID: 12720343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon nanotube nanoelectronic devices compatible with transmission electron microscopy.
    Wang H; Luo J; Schäffel F; Rümmeli MH; Briggs GA; Warner JH
    Nanotechnology; 2011 Jun; 22(24):245305. PubMed ID: 21508501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon nanotube growth for through silicon via application.
    Xie R; Zhang C; van der Veen MH; Arstila K; Hantschel T; Chen B; Zhong G; Robertson J
    Nanotechnology; 2013 Mar; 24(12):125603. PubMed ID: 23466644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct growth of horizontally aligned carbon nanotubes between electrodes and its application to field-effect transistors.
    Hayashi Y; Jang B; Iijima T; Tokunaga T; Hayashi A; Tanemura M; Amaratunga GA
    J Nanosci Nanotechnol; 2011 Dec; 11(12):11011-4. PubMed ID: 22409045
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical coupling limits the density and quality of self-organized carbon nanotube growth.
    Bedewy M; Hart AJ
    Nanoscale; 2013 Apr; 5(7):2928-37. PubMed ID: 23455411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.