BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 20499288)

  • 1. Using multi-parameter flow cytometry to monitor the yeast Rhodotorula glutinis CCMI 145 batch growth and oil production towards biodiesel.
    da Silva TL; Feijão D; Reis A
    Appl Biochem Biotechnol; 2010 Dec; 162(8):2166-76. PubMed ID: 20499288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring Rhodotorula glutinis CCMI 145 physiological response and oil production growing on xylose and glucose using multi-parameter flow cytometry.
    da Silva TL; Feijão D; Roseiro JC; Reis A
    Bioresour Technol; 2011 Feb; 102(3):2998-3006. PubMed ID: 21030251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry.
    da Silva TL; Reis A; Medeiros R; Oliveira AC; Gouveia L
    Appl Biochem Biotechnol; 2009 Nov; 159(2):568-78. PubMed ID: 19067244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of cell growth rate by light irradiation in the cultivation of Rhodotorula glutinis.
    Yen HW; Zhang Z
    Bioresour Technol; 2011 Oct; 102(19):9279-81. PubMed ID: 21757336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of dissolved oxygen level on cell growth and total lipid accumulation in the cultivation of Rhodotorula glutinis.
    Yen HW; Zhang Z
    J Biosci Bioeng; 2011 Jul; 112(1):71-4. PubMed ID: 21498112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock.
    Cheirsilp B; Suwannarat W; Niyomdecha R
    N Biotechnol; 2011 Jul; 28(4):362-8. PubMed ID: 21255692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium.
    Xue F; Miao J; Zhang X; Luo H; Tan T
    Bioresour Technol; 2008 Sep; 99(13):5923-7. PubMed ID: 18420404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new strategy for lipid production by mix cultivation of Spirulina platensis and Rhodotorula glutinis.
    Xue F; Miao J; Zhang X; Tan T
    Appl Biochem Biotechnol; 2010 Jan; 160(2):498-503. PubMed ID: 18931954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid production for second generation biodiesel by the oleaginous yeast Rhodotorula graminis.
    Galafassi S; Cucchetti D; Pizza F; Franzosi G; Bianchi D; Compagno C
    Bioresour Technol; 2012 May; 111():398-403. PubMed ID: 22366600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of irradiation and microfiltration on the cells growing and total lipids production in the cultivation of Rhodotorula glutinis.
    Yen HW; Yang YC
    Bioresour Technol; 2012 Mar; 107():539-41. PubMed ID: 22244906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of beta-carotene-enriched rice bran using solid-state fermentation of Rhodotorula glutinis.
    Roadjanakamolson M; Suntornsuk W
    J Microbiol Biotechnol; 2010 Mar; 20(3):525-31. PubMed ID: 20372023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced lipid production with undetoxified corncob hydrolysate by Rhodotorula glutinis using a high cell density culture strategy.
    Liu Y; Wang Y; Liu H; Zhang J
    Bioresour Technol; 2015 Mar; 180():32-9. PubMed ID: 25585258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of airlift bioreactor for the cultivation of aerobic oleaginous yeast Rhodotorula glutinis with different aeration rates.
    Yen HW; Liu YX
    J Biosci Bioeng; 2014 Aug; 118(2):195-8. PubMed ID: 24503421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid production by culturing oleaginous yeast and algae with food waste and municipal wastewater in an integrated process.
    Chi Z; Zheng Y; Jiang A; Chen S
    Appl Biochem Biotechnol; 2011 Sep; 165(2):442-53. PubMed ID: 21567213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomass production from glutamate fermentation wastewater by the co-culture of Candida halophila and Rhodotorula glutinis.
    Zheng S; Yang M; Yang Z; Yang Q
    Bioresour Technol; 2005 Sep; 96(13):1522-4. PubMed ID: 15939282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis.
    Braunwald T; Schwemmlein L; Graeff-Hönninger S; French WT; Hernandez R; Holmes WE; Claupein W
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6581-8. PubMed ID: 23728238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and lipid production of Rhodotorula glutinis R4, in comparison to other oleaginous yeasts.
    Maza DD; Viñarta SC; Su Y; Guillamón JM; Aybar MJ
    J Biotechnol; 2020 Feb; 310():21-31. PubMed ID: 32004579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhodotorula glutinis T13 as a potential source of microbial lipids for biodiesel generation.
    Maza DD; Viñarta SC; García-Ríos E; Guillamón JM; Aybar MJ
    J Biotechnol; 2021 Apr; 331():14-18. PubMed ID: 33711359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of beta-carotene production by Rhodotorula glutinis DM28 in fermented radish brine.
    Malisorn C; Suntornsuk W
    Bioresour Technol; 2008 May; 99(7):2281-7. PubMed ID: 17587568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enrichment of wheat bran by Rhodotorula gracilis through solid-state fermentation.
    Jacob Z
    Folia Microbiol (Praha); 1991; 36(1):86-91. PubMed ID: 1668748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.