These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 20499833)

  • 1. High functional expression of osteoblasts on imogolite, aluminosilicate nanotubes.
    Ishikawa K; Akasaka T; Yawaka Y; Watari F
    J Biomed Nanotechnol; 2010 Feb; 6(1):59-65. PubMed ID: 20499833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physico-chemical control over the single- or double-wall structure of aluminogermanate imogolite-like nanotubes.
    Thill A; Maillet P; Guiose B; Spalla O; Belloni L; Chaurand P; Auffan M; Olivi L; Rose J
    J Am Chem Soc; 2012 Feb; 134(8):3780-6. PubMed ID: 22296596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imogolite nanotubes: stability, electronic, and mechanical properties.
    Guimarães L; Enyashin AN; Frenzel J; Heine T; Duarte HA; Seifert G
    ACS Nano; 2007 Nov; 1(4):362-8. PubMed ID: 19206688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation.
    Yu WQ; Jiang XQ; Zhang FQ; Xu L
    J Biomed Mater Res A; 2010 Sep; 94(4):1012-22. PubMed ID: 20694968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polystyrene scaffolds based on microfibers as a bone substitute; development and in vitro study.
    Terranova L; Mallet R; Perrot R; Chappard D
    Acta Biomater; 2016 Jan; 29():380-388. PubMed ID: 26518105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone formation on carbon nanotube composite.
    Bhattacharya M; Wutticharoenmongkol-Thitiwongsawet P; Hamamoto DT; Lee D; Cui T; Prasad HS; Ahmad M
    J Biomed Mater Res A; 2011 Jan; 96(1):75-82. PubMed ID: 21105154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of 3D PCL microsphere/TiO
    Khoshroo K; Jafarzadeh Kashi TS; Moztarzadeh F; Tahriri M; Jazayeri HE; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):586-598. PubMed ID: 27770931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration.
    Silva E; Vasconcellos LMR; Rodrigues BVM; Dos Santos DM; Campana-Filho SP; Marciano FR; Webster TJ; Lobo AO
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():31-39. PubMed ID: 28183613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic profiling of osteoblast-like cells cultured on a novel bone reconstructive material, consisting of poly-L-lactide, carbon nanotubes and microhydroxyapatite, in the presence of bone morphogenetic protein-2.
    van der Zande M; Walboomers XF; Brännvall M; Olalde B; Jurado MJ; Alava JI; Jansen JA
    Acta Biomater; 2010 Nov; 6(11):4352-60. PubMed ID: 20601234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pre-osteoblast infiltration and differentiation in highly porous apatite-coated PLLA electrospun scaffolds.
    Whited BM; Whitney JR; Hofmann MC; Xu Y; Rylander MN
    Biomaterials; 2011 Mar; 32(9):2294-304. PubMed ID: 21195474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of a hydroxyapatite-coated nanotube surface of titanium on MC3T3-E1 cells: an in vitro study.
    Qiao SC; Du J; Zhao JM; Shi JY; Gu YX; Lai HC
    Implant Dent; 2015 Apr; 24(2):204-10. PubMed ID: 25734942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotubes as scaffolds for cell culture and effect on cellular functions.
    Aoki N; Akasaka T; Watari F; Yokoyama A
    Dent Mater J; 2007 Mar; 26(2):178-85. PubMed ID: 17621932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications.
    Cheng Q; Rutledge K; Jabbarzadeh E
    Ann Biomed Eng; 2013 May; 41(5):904-16. PubMed ID: 23283475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clay nanotube-biopolymer composite scaffolds for tissue engineering.
    Naumenko EA; Guryanov ID; Yendluri R; Lvov YM; Fakhrullin RF
    Nanoscale; 2016 Apr; 8(13):7257-71. PubMed ID: 26974658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The precision structural regulation of PLLA porous scaffold and its influence on the proliferation and differentiation of MC3T3-E1 cells.
    Ge M; Xue L; Nie T; Ma H; Zhang J
    J Biomater Sci Polym Ed; 2016 Dec; 27(17):1685-1697. PubMed ID: 27569555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vitro and in Vivo Studies of Novel Poly(D,L-lactic acid), Superhydrophilic Carbon Nanotubes, and Nanohydroxyapatite Scaffolds for Bone Regeneration.
    Siqueira IA; Corat MA; Cavalcanti Bd; Ribeiro Neto WA; Martin AA; Bretas RE; Marciano FR; Lobo AO
    ACS Appl Mater Interfaces; 2015 May; 7(18):9385-98. PubMed ID: 25899398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel 3D bone-mimetic scaffold composed of collagen/MTA/MWCNT modulates cell migration and osteogenesis.
    Valverde TM; Castro EG; Cardoso MH; Martins-Júnior PA; Souza LM; Silva PP; Ladeira LO; Kitten GT
    Life Sci; 2016 Oct; 162():115-24. PubMed ID: 27523047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison study on the behavior of human endometrial stem cell-derived osteoblast cells on PLGA/HA nanocomposite scaffolds fabricated by electrospinning and freeze-drying methods.
    Namini MS; Bayat N; Tajerian R; Ebrahimi-Barough S; Azami M; Irani S; Jangjoo S; Shirian S; Ai J
    J Orthop Surg Res; 2018 Mar; 13(1):63. PubMed ID: 29587806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defective Multilayer Carbon Nanotubes Increase Alkaline Phosphatase Activity and Bone-Like Nodules in Osteoblast Cultures.
    Zancanela DC; Simaã AM; Matsubara EY; Rosolen JM; Ciancaglini P
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1437-44. PubMed ID: 27433601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.