These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 20499849)

  • 1. Vertically oriented sub-10-nm plasmonic nanogap arrays.
    Im H; Bantz KC; Lindquist NC; Haynes CL; Oh SH
    Nano Lett; 2010 Jun; 10(6):2231-6. PubMed ID: 20499849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Fabrication of Ultradense Annular Nanogap Arrays for Plasmon-Enhanced Spectroscopy.
    Cai H; Meng Q; Zhao H; Li M; Dai Y; Lin Y; Ding H; Pan N; Tian Y; Luo Y; Wang X
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20189-20195. PubMed ID: 29799180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic layer deposition assisted fabrication of large-scale metal nanogaps for surface enhanced Raman scattering.
    Cheng T; Zhu Z; Wang X; Zhu L; Li A; Jiang L; Cao Y
    Nanotechnology; 2023 Apr; 34(26):. PubMed ID: 36996801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Throughput Fabrication of Triangular Nanogap Arrays for Surface-Enhanced Raman Spectroscopy.
    Luo S; Mancini A; Wang F; Liu J; Maier SA; de Mello JC
    ACS Nano; 2022 May; 16(5):7438-7447. PubMed ID: 35381178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Massively Parallel Arrays of Size-Controlled Metallic Nanogaps with Gap-Widths Down to the Sub-3-nm Level.
    Luo S; Mancini A; Berté R; Hoff BH; Maier SA; de Mello JC
    Adv Mater; 2021 May; 33(20):e2100491. PubMed ID: 33939199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing.
    Chen X; Lindquist NC; Klemme DJ; Nagpal P; Norris DJ; Oh SH
    Nano Lett; 2016 Dec; 16(12):7849-7856. PubMed ID: 27960527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves.
    Chen X; Park HR; Pelton M; Piao X; Lindquist NC; Im H; Kim YJ; Ahn JS; Ahn KJ; Park N; Kim DS; Oh SH
    Nat Commun; 2013; 4():2361. PubMed ID: 23999053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wafer-Scale and Cost-Effective Manufacturing of Controllable Nanogap Arrays for Highly Sensitive SERS Sensing.
    Zhao Q; Yang H; Nie B; Luo Y; Shao J; Li G
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3580-3590. PubMed ID: 34983178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wafer-scale fabrication of high-quality tunable gold nanogap arrays for surface-enhanced Raman scattering.
    Le-The H; Lozeman JJA; Lafuente M; Muñoz P; Bomer JG; Duy-Tong H; Berenschot E; van den Berg A; Tas NR; Odijk M; Eijkel JCT
    Nanoscale; 2019 Jul; 11(25):12152-12160. PubMed ID: 31194202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Gold Trimers and Dimers with Air-Filled Nanogaps.
    Lawson ZR; Preston AS; Korsa MT; Dominique NL; Tuff WJ; Sutter E; Camden JP; Adam J; Hughes RA; Neretina S
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):28186-28198. PubMed ID: 35695394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic-Layer-Deposition Assisted Formation of Wafer-Scale Double-Layer Metal Nanoparticles with Tunable Nanogap for Surface-Enhanced Raman Scattering.
    Cao YQ; Qin K; Zhu L; Qian X; Zhang XJ; Wu D; Li AD
    Sci Rep; 2017 Jul; 7(1):5161. PubMed ID: 28701788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wafer scale fabrication of highly dense and uniform array of sub-5 nm nanogaps for surface enhanced Raman scatting substrates.
    Cai H; Wu Y; Dai Y; Pan N; Tian Y; Luo Y; Wang X
    Opt Express; 2016 Sep; 24(18):20808-15. PubMed ID: 27607684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arrays of Plasmonic Nanoparticle Dimers with Defined Nanogap Spacers.
    Jeong HH; Adams MC; Günther JP; Alarcón-Correa M; Kim I; Choi E; Miksch C; Mark AF; Mark AG; Fischer P
    ACS Nano; 2019 Oct; 13(10):11453-11459. PubMed ID: 31539228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suspended 3D metallic dimers with sub-10 nm gap for high-sensitive SERS detection.
    Zeng P; Zhou Y; Shu Z; Liang H; Zhang X; Chen Y; Duan H; Zheng M
    Nanotechnology; 2022 Dec; 34(9):. PubMed ID: 36384034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultralarge Area Sub-10 nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable High-Sensitivity SERS.
    Jin HM; Kim JY; Heo M; Jeong SJ; Kim BH; Cha SK; Han KH; Kim JH; Yang GG; Shin J; Kim SO
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44660-44667. PubMed ID: 30480431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities.
    Chen X; Ciracì C; Smith DR; Oh SH
    Nano Lett; 2015 Jan; 15(1):107-13. PubMed ID: 25423481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical rectification and field enhancement in a plasmonic nanogap.
    Ward DR; Hüser F; Pauly F; Cuevas JC; Natelson D
    Nat Nanotechnol; 2010 Oct; 5(10):732-6. PubMed ID: 20852641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps.
    Duan H; Hu H; Kumar K; Shen Z; Yang JK
    ACS Nano; 2011 Sep; 5(9):7593-600. PubMed ID: 21846105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon-Driven Dynamic Response of a Hierarchically Structural Silver-Decorated Nanorod Array for Sub-10 nm Nanogaps.
    Wang Y; Wang H; Wang Y; Shen Y; Xu S; Xu W
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15623-9. PubMed ID: 27250862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.