These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 20499849)

  • 21. Controlled Patterning of Plasmonic Dimers by Using an Ultrathin Nanoporous Alumina Membrane as a Shadow Mask.
    Hao Q; Huang H; Fan X; Yin Y; Wang J; Li W; Qiu T; Ma L; Chu PK; Schmidt OG
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36199-36205. PubMed ID: 28948758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Au double nanopillars with nanogap for plasmonic sensor.
    Kubo W; Fujikawa S
    Nano Lett; 2011 Jan; 11(1):8-15. PubMed ID: 21114297
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms.
    Chen J; Qin G; Wang J; Yu J; Shen B; Li S; Ren Y; Zuo L; Shen W; Das B
    Biosens Bioelectron; 2013 Jun; 44():191-7. PubMed ID: 23428732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-Contrast Infrared Absorption Spectroscopy via Mass-Produced Coaxial Zero-Mode Resonators with Sub-10 nm Gaps.
    Yoo D; Mohr DA; Vidal-Codina F; John-Herpin A; Jo M; Kim S; Matson J; Caldwell JD; Jeon H; Nguyen NC; Martin-Moreno L; Peraire J; Altug H; Oh SH
    Nano Lett; 2018 Mar; 18(3):1930-1936. PubMed ID: 29437401
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Large area metal nanowire arrays with tunable sub-20 nm nanogaps.
    Le Thi Ngoc L; Jin M; Wiedemair J; van den Berg A; Carlen ET
    ACS Nano; 2013 Jun; 7(6):5223-34. PubMed ID: 23647306
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly effective SERS substrates based on an atomic-layer-deposition-tailored nanorod array scaffold.
    Liu M; Sun L; Cheng C; Hu H; Shen Z; Fan HJ
    Nanoscale; 2011 Sep; 3(9):3627-30. PubMed ID: 21842099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanocracking and metallization doubly defined large-scale 3D plasmonic sub-10 nm-gap arrays as extremely sensitive SERS substrates.
    Pan R; Yang Y; Wang Y; Li S; Liu Z; Su Y; Quan B; Li Y; Gu C; Li J
    Nanoscale; 2018 Feb; 10(7):3171-3180. PubMed ID: 29364303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D zig-zag nanogaps based on nanoskiving for plasmonic nanofocusing.
    Gu P; Zhou Z; Zhao Z; Möhwald H; Li C; Chiechi RC; Shi Z; Zhang G
    Nanoscale; 2019 Feb; 11(8):3583-3590. PubMed ID: 30729970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication and near-field visualization of a wafer-scale dense plasmonic nanostructured array.
    Yun J; Lee H; Mun C; Jahng J; Morrison WA; Nowak DB; Song JH; Lim DK; Bae TS; Kim HM; Kim NH; Nam SH; Kim J; Seo MK; Kim DH; Park SG; Suh YD
    RSC Adv; 2018 Feb; 8(12):6444-6451. PubMed ID: 35540411
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrating Sub-3 nm Plasmonic Gaps into Solid-State Nanopores.
    Shi X; Verschueren D; Pud S; Dekker C
    Small; 2018 May; 14(18):e1703307. PubMed ID: 29251411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High Aspect-Ratio Iridium-Coated Nanopillars for Highly Reproducible Surface-Enhanced Raman Scattering (SERS).
    Kang G; Matikainen A; Stenberg P; Färm E; Li P; Ritala M; Vahimaa P; Honkanen S; Tan X
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11452-9. PubMed ID: 25961706
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electron Transport Across Plasmonic Molecular Nanogaps Interrogated with Surface-Enhanced Raman Scattering.
    Lin L; Zhang Q; Li X; Qiu M; Jiang X; Jin W; Gu H; Lei DY; Ye J
    ACS Nano; 2018 Jul; 12(7):6492-6503. PubMed ID: 29924592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-density metallic nanogap arrays for the sensitive detection of single-walled carbon nanotube thin films.
    Park HR; Namgung S; Chen X; Oh SH
    Faraday Discuss; 2015; 178():195-201. PubMed ID: 25760454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes.
    Barik A; Chen X; Oh SH
    Nano Lett; 2016 Oct; 16(10):6317-6324. PubMed ID: 27602796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wafer-scale double-layer stacked Au/Al2O3@Au nanosphere structure with tunable nanospacing for surface-enhanced Raman scattering.
    Hu Z; Liu Z; Li L; Quan B; Li Y; Li J; Gu C
    Small; 2014 Oct; 10(19):3933-42. PubMed ID: 24995658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Supramolecular Multilayered Templates for Fabricating Nanometer-Precise Spacings: Implications for the Next-Generation of Devices Integrating Nanogap/Nanochannel Components.
    Arjmandi-Tash H; van Deursen PMG; Bellunato A; de Sere C; Overchenko Z; Gupta KBSS; Schneider GF
    ACS Appl Nano Mater; 2020 Nov; 3(11):10586-10590. PubMed ID: 33283172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Uniform Periodic Bowtie SERS Substrate with Narrow Nanogaps Obtained by Monitored Pulsed Electrodeposition.
    Yao X; Jiang S; Luo S; Liu BW; Huang TX; Hu S; Zhu J; Wang X; Ren B
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36505-36512. PubMed ID: 32686400
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing.
    Jiwei Q; Yudong L; Ming Y; Qiang W; Zongqiang C; Wudeng W; Wenqiang L; Xuanyi Y; Jingjun X; Qian S
    Nanoscale Res Lett; 2013 Oct; 8(1):437. PubMed ID: 24148212
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-Dimensional-Stacked Gold Nanoparticles with Sub-5 nm Gaps on Vertically Aligned TiO
    Wang X; Zhu X; Shi H; Chen Y; Chen Z; Zeng Y; Tang Z; Duan H
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35607-35614. PubMed ID: 30232887
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-aligned formation of sub 1 nm gaps utilizing electromigration during metal deposition.
    Naitoh Y; Ohata T; Matsushita R; Okawa E; Horikawa M; Oyama M; Mukaida M; Wang DF; Kiguchi M; Tsukagoshi K; Ishida T
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12869-75. PubMed ID: 24274822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.