These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 20499894)

  • 1. Single-impurity scattering and carrier mobility in doped Ge/Si core-shell nanowires.
    Lee H; Choi HJ
    Nano Lett; 2010 Jun; 10(6):2207-10. PubMed ID: 20499894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hole gas accumulation in Si/Ge core-shell and Si/Ge/Si core-double shell nanowires.
    Zhang X; Jevasuwan W; Pradel KC; Subramani T; Takei T; Fukata N
    Nanoscale; 2018 Dec; 10(45):21062-21068. PubMed ID: 30187068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of confinement on carrier transport in Ge-Si(x)Ge(1-x) core-shell nanowires.
    Nah J; Dillen DC; Varahramyan KM; Banerjee SK; Tutuc E
    Nano Lett; 2012 Jan; 12(1):108-12. PubMed ID: 22111925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of impurity doping and stress in Si/Ge and Ge/Si core-shell nanowires.
    Fukata N; Mitome M; Sekiguchi T; Bando Y; Kirkham M; Hong JI; Wang ZL; Snyder RL
    ACS Nano; 2012 Oct; 6(10):8887-95. PubMed ID: 22947081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clear Experimental Demonstration of Hole Gas Accumulation in Ge/Si Core-Shell Nanowires.
    Fukata N; Yu M; Jevasuwan W; Takei T; Bando Y; Wu W; Wang ZL
    ACS Nano; 2015 Dec; 9(12):12182-8. PubMed ID: 26554299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling Catalyst-Free Formation and Hole Gas Accumulation by Fabricating Si/Ge Core-Shell and Si/Ge/Si Core-Double Shell Nanowires.
    Zhang X; Jevasuwan W; Sugimoto Y; Fukata N
    ACS Nano; 2019 Nov; 13(11):13403-13412. PubMed ID: 31626528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boron distributions in individual core-shell Ge/Si and Si/Ge heterostructured nanowires.
    Han B; Shimizu Y; Wipakorn J; Nishibe K; Tu Y; Inoue K; Fukata N; Nagai Y
    Nanoscale; 2016 Dec; 8(47):19811-19815. PubMed ID: 27874128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient electron and hole doping in compositionally abrupt Si/Ge nanowires.
    Li P; Zhou R; Pan B; Zeng XC
    Nanoscale; 2013 May; 5(9):3880-8. PubMed ID: 23525137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of Confined Electron Gas and Steep-Slope Behavior in Delta-Doped GaAs-AlGaAs Core-Shell Nanowire Transistors.
    Morkötter S; Jeon N; Rudolph D; Loitsch B; Spirkoska D; Hoffmann E; Döblinger M; Matich S; Finley JJ; Lauhon LJ; Abstreiter G; Koblmüller G
    Nano Lett; 2015 May; 15(5):3295-302. PubMed ID: 25923841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal conductivity of ge and ge-si core-shell nanowires in the phonon confinement regime.
    Wingert MC; Chen ZC; Dechaumphai E; Moon J; Kim JH; Xiang J; Chen R
    Nano Lett; 2011 Dec; 11(12):5507-13. PubMed ID: 22112167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defect control and Si/Ge core-shell heterojunction formation on silicon nanowire surfaces formed using the top-down method.
    Fukata N; Jevasuwan W; Sun YL; Sugimoto Y
    Nanotechnology; 2022 Jan; 33(13):. PubMed ID: 34985416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radial modulation doping in core-shell nanowires.
    Dillen DC; Kim K; Liu ES; Tutuc E
    Nat Nanotechnol; 2014 Feb; 9(2):116-20. PubMed ID: 24441982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical mechanism of surface roughening of the radial Ge-core/Si-shell nanowire heterostructure and thermodynamic prediction of surface stability of the InAs-core/GaAs-shell nanowire structure.
    Cao YY; Ouyang G; Wang CX; Yang GW
    Nano Lett; 2013 Feb; 13(2):436-43. PubMed ID: 23297740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Si and Ge based metallic core/shell nanowires for nano-electronic device applications.
    Bhuyan PD; Kumar A; Sonvane Y; Gajjar PN; Magri R; Gupta SK
    Sci Rep; 2018 Nov; 8(1):16885. PubMed ID: 30442936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and characterization of Group IV semiconductor nanowires.
    Fukata N; Jevasuwan W
    Nanotechnology; 2024 Jan; 35(12):. PubMed ID: 38096568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gate-modulated thermoelectric power factor of hole gas in Ge-Si core-shell nanowires.
    Moon J; Kim JH; Chen ZC; Xiang J; Chen R
    Nano Lett; 2013 Mar; 13(3):1196-202. PubMed ID: 23394480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diameter-independent hole mobility in Ge/Si core/shell nanowire field effect transistors.
    Nguyen BM; Taur Y; Picraux ST; Dayeh SA
    Nano Lett; 2014 Feb; 14(2):585-91. PubMed ID: 24382113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-crystal, Si nanotubes, and their mechanical resonant properties.
    Quitoriano NJ; Belov M; Evoy S; Kamins TI
    Nano Lett; 2009 Apr; 9(4):1511-6. PubMed ID: 19271766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of Ge-core/a-Si-shell nanowires with conformal shell thickness deposited after gold removal for high-mobility p-channel field-effect transistors.
    Simanullang MDK; Wisna GBM; Usami K; Oda S
    Nanoscale Adv; 2020 Apr; 2(4):1465-1472. PubMed ID: 36132315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of erbium incorporation on the structure and photophysics of silicon-germanium nanowires.
    Wu J; Wieligor M; Zerda TW; Coffer JL
    Nanoscale; 2010 Dec; 2(12):2657-67. PubMed ID: 20931125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.