BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 20499901)

  • 1. Efficient gene transfection by histidine-modified chitosan through enhancement of endosomal escape.
    Chang KL; Higuchi Y; Kawakami S; Yamashita F; Hashida M
    Bioconjug Chem; 2010 Jun; 21(6):1087-95. PubMed ID: 20499901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of lysine-histidine dendron modified chitosan for improving transfection efficiency in HEK293 cells.
    Chang KL; Higuchi Y; Kawakami S; Yamashita F; Hashida M
    J Control Release; 2011 Dec; 156(2):195-202. PubMed ID: 21802461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient gene transfer by histidylated polylysine/pDNA complexes.
    Midoux P; Monsigny M
    Bioconjug Chem; 1999; 10(3):406-11. PubMed ID: 10346871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene transfer by DNA/mannosylated chitosan complexes into mouse peritoneal macrophages.
    Hashimoto M; Morimoto M; Saimoto H; Shigemasa Y; Yanagie H; Eriguchi M; Sato T
    Biotechnol Lett; 2006 Jun; 28(11):815-21. PubMed ID: 16786247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serum tolerance and endosomal escape capacity of histidine-modified pDNA-loaded complexes based on polyamidoamine dendrimer derivatives.
    Wen Y; Guo Z; Du Z; Fang R; Wu H; Zeng X; Wang C; Feng M; Pan S
    Biomaterials; 2012 Nov; 33(32):8111-21. PubMed ID: 22898182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection.
    Lo SL; Wang S
    Biomaterials; 2008 May; 29(15):2408-14. PubMed ID: 18295328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and in vitro transfection efficiency of chitosan microspheres containing plasmid DNA:poly(L-lysine) complexes.
    Aral C; Akbuga J
    J Pharm Pharm Sci; 2003; 6(3):321-6. PubMed ID: 14738712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring advantages/disadvantages and improvements in overcoming gene delivery barriers of amino acid modified trimethylated chitosan.
    Zheng H; Tang C; Yin C
    Pharm Res; 2015 Jun; 32(6):2038-50. PubMed ID: 25534683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Receptor mediated gene delivery by folate conjugated N-trimethyl chitosan in vitro.
    Zheng Y; Cai Z; Song X; Yu B; Bi Y; Chen Q; Zhao D; Xu J; Hou S
    Int J Pharm; 2009 Dec; 382(1-2):262-9. PubMed ID: 19686829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylated N-(4-N,N-dimethylaminobenzyl) chitosan for novel effective gene carriers.
    Rojanarata T; Petchsangsai M; Opanasopit P; Ngawhirunpat T; Ruktanonchai U; Sajomsang W; Tantayanon S
    Eur J Pharm Biopharm; 2008 Sep; 70(1):207-14. PubMed ID: 18602802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving chitosan-mediated gene transfer by the introduction of intracellular buffering moieties into the chitosan backbone.
    Moreira C; Oliveira H; Pires LR; Simões S; Barbosa MA; Pêgo AP
    Acta Biomater; 2009 Oct; 5(8):2995-3006. PubMed ID: 19427930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized pulmonary gene transfection in mice by spray-freeze dried powder inhalation.
    Mohri K; Okuda T; Mori A; Danjo K; Okamoto H
    J Control Release; 2010 Jun; 144(2):221-6. PubMed ID: 20184930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quaternary complexes modified from pDNA and poly-l-lysine complexes to enhance pH-buffering effect and suppress cytotoxicity.
    Kodama Y; Yatsugi Y; Kitahara T; Kurosaki T; Egashira K; Nakashima M; Muro T; Nakagawa H; Higuchi N; Nakamura T; Sasaki H
    J Pharm Sci; 2015 Apr; 104(4):1470-7. PubMed ID: 25652194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactosylated chitosan for DNA delivery into hepatocytes: the effect of lactosylation on the physicochemical properties and intracellular trafficking of pDNA/chitosan complexes.
    Hashimoto M; Morimoto M; Saimoto H; Shigemasa Y; Sato T
    Bioconjug Chem; 2006; 17(2):309-16. PubMed ID: 16536460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Histidylated Arginine-Grafted Bioreducible Polymer To Enhance Transfection Efficiency for Use as a Gene Carrier.
    Nam JP; Nam K; Nah JW; Kim SW
    Mol Pharm; 2015 Jul; 12(7):2352-64. PubMed ID: 26029979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear localization signal peptides enhance transfection efficiency of chitosan/DNA complexes.
    Opanasopit P; Rojanarata T; Apirakaramwong A; Ngawhirunpat T; Ruktanonchai U
    Int J Pharm; 2009 Dec; 382(1-2):291-5. PubMed ID: 19716869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression.
    Miyata K; Kakizawa Y; Nishiyama N; Harada A; Yamasaki Y; Koyama H; Kataoka K
    J Am Chem Soc; 2004 Mar; 126(8):2355-61. PubMed ID: 14982439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and in vitro evaluation of novel lipopeptide transfection agents for efficient gene delivery.
    Tarwadi ; Jazayeri JA; Prankerd RJ; Pouton CW
    Bioconjug Chem; 2008 Apr; 19(4):940-50. PubMed ID: 18333604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled carboxymethyl poly (L-histidine) coated poly (β-amino ester)/DNA complexes for gene transfection.
    Gu J; Wang X; Jiang X; Chen Y; Chen L; Fang X; Sha X
    Biomaterials; 2012 Jan; 33(2):644-58. PubMed ID: 22030282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimize nuclear localization and intra-nucleus disassociation of the exogene for facilitating transfection efficacy of the chitosan.
    Zhao R; Sun B; Liu T; Liu Y; Zhou S; Zuo A; Liang D
    Int J Pharm; 2011 Jul; 413(1-2):254-9. PubMed ID: 21536119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.