These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 20499937)
1. Proteome from lemon fruit flavedo reveals that this tissue produces high amounts of the Cit s1 germin-like isoforms. Pignataro V; Canton C; Spadafora A; Mazzuca S J Agric Food Chem; 2010 Jun; 58(12):7239-44. PubMed ID: 20499937 [TBL] [Abstract][Full Text] [Related]
2. The Citrus clementina putative allergens: from proteomic analysis to structural features. Serra IA; Bernardo L; Spadafora A; Faccioli P; Canton C; Mazzuca S J Agric Food Chem; 2013 Sep; 61(37):8949-58. PubMed ID: 23927767 [TBL] [Abstract][Full Text] [Related]
3. Dehydrin from citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the flavedo of fruit but responsive to cold and water stress in leaves. Sanchez-Ballesta MT; Rodrigo MJ; Lafuente MT; Granell A; Zacarias L J Agric Food Chem; 2004 Apr; 52(7):1950-7. PubMed ID: 15053535 [TBL] [Abstract][Full Text] [Related]
4. Germin-like protein Cit s 1 and profilin Cit s 2 are major allergens in orange (Citrus sinensis) fruits. Crespo JF; Retzek M; Foetisch K; Sierra-Maestro E; Cid-Sanchez AB; Pascual CY; Conti A; Feliu A; Rodriguez J; Vieths S; Scheurer S Mol Nutr Food Res; 2006 Mar; 50(3):282-90. PubMed ID: 16521162 [TBL] [Abstract][Full Text] [Related]
5. Phosphoproteomic analysis of chromoplasts from sweet orange during fruit ripening. Zeng Y; Pan Z; Wang L; Ding Y; Xu Q; Xiao S; Deng X Physiol Plant; 2014 Feb; 150(2):252-70. PubMed ID: 23786612 [TBL] [Abstract][Full Text] [Related]
6. A differentially expressed proteomic analysis in placental tissues in relation to pungency during the pepper fruit development. Lee JM; Kim S; Lee JY; Yoo EY; Cho MC; Cho MR; Kim BD; Bahk YY Proteomics; 2006 Oct; 6(19):5248-59. PubMed ID: 16947123 [TBL] [Abstract][Full Text] [Related]
7. MAPA distinguishes genotype-specific variability of highly similar regulatory protein isoforms in potato tuber. Hoehenwarter W; Larhlimi A; Hummel J; Egelhofer V; Selbig J; van Dongen JT; Wienkoop S; Weckwerth W J Proteome Res; 2011 Jul; 10(7):2979-91. PubMed ID: 21563841 [TBL] [Abstract][Full Text] [Related]
8. The role of carotenoid cleavage dioxygenases in the regulation of carotenoid profiles during maturation in citrus fruit. Kato M; Matsumoto H; Ikoma Y; Okuda H; Yano M J Exp Bot; 2006; 57(10):2153-64. PubMed ID: 16714310 [TBL] [Abstract][Full Text] [Related]
9. Isolation, cloning and allergenic reactivity of natural profilin Cit s 2, a major orange allergen. López-Torrejón G; Ibáñez MD; Ahrazem O; Sánchez-Monge R; Sastre J; Lombardero M; Barber D; Salcedo G Allergy; 2005 Nov; 60(11):1424-9. PubMed ID: 16197476 [TBL] [Abstract][Full Text] [Related]
10. Structural characterization of the thermally tolerant pectin methylesterase purified from citrus sinensis fruit and its gene sequence. Savary BJ; Vasu P; Cameron RG; McCollum TG; Nuñez A J Agric Food Chem; 2013 Dec; 61(51):12711-9. PubMed ID: 24328246 [TBL] [Abstract][Full Text] [Related]
11. Cloning and characterization of two 9-cis-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (Citrus sinensis L. Osbeck). Rodrigo MJ; Alquezar B; Zacarías L J Exp Bot; 2006; 57(3):633-43. PubMed ID: 16396998 [TBL] [Abstract][Full Text] [Related]
12. Citrus phenylpropanoids and defence against pathogens. Part II: gene expression and metabolite accumulation in the response of fruits to Penicillium digitatum infection. Ballester AR; Teresa Lafuente M; González-Candelas L Food Chem; 2013 Jan; 136(1):285-91. PubMed ID: 23017425 [TBL] [Abstract][Full Text] [Related]
13. Proteomic analysis of pathogenesis-related proteins (PRs) induced by compatible and incompatible interactions of pepper mild mottle virus (PMMoV) in Capsicum chinense L3 plants. Elvira MI; Galdeano MM; Gilardi P; García-Luque I; Serra MT J Exp Bot; 2008; 59(6):1253-65. PubMed ID: 18375936 [TBL] [Abstract][Full Text] [Related]
14. Effect of blue and red LED light irradiation on β-cryptoxanthin accumulation in the flavedo of citrus fruits. Ma G; Zhang L; Kato M; Yamawaki K; Kiriiwa Y; Yahata M; Ikoma Y; Matsumoto H J Agric Food Chem; 2012 Jan; 60(1):197-201. PubMed ID: 22026557 [TBL] [Abstract][Full Text] [Related]
15. Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Lin SK; Chang MC; Tsai YG; Lur HS Proteomics; 2005 May; 5(8):2140-56. PubMed ID: 15852341 [TBL] [Abstract][Full Text] [Related]
16. Identification of thermolabile pectin methylesterases from sweet orange fruit by peptide mass fingerprinting. Savary BJ; Vasu P; Nunez A; Cameron RG J Agric Food Chem; 2010 Dec; 58(23):12462-8. PubMed ID: 21053908 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the human casein phosphoproteome by 2-D electrophoresis and MALDI-TOF/TOF MS reveals new phosphoforms. Poth AG; Deeth HC; Alewood PF; Holland JW J Proteome Res; 2008 Nov; 7(11):5017-27. PubMed ID: 18847231 [TBL] [Abstract][Full Text] [Related]
18. Structures of new cyclic peptides in young unshiu (Citrus unshiu Marcov.), orange (Citrus sinensis Osbeck.) and amanatsu (Citrus natsudaidai) peelings. Matsubara Y; Yusa T; Sawabe A; Iizuka Y; Takekuma S; Yoshida Y Agric Biol Chem; 1991 Dec; 55(12):2923-9. PubMed ID: 1368762 [TBL] [Abstract][Full Text] [Related]