These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 20500378)

  • 1. TEM studies of melt-spun alloys with liquid miscibility gap.
    Kozieł T; Kedzierski Z; Zielińska-Lipiec A; Latuch J; Cieślak G
    J Microsc; 2010 Mar; 237(3):267-70. PubMed ID: 20500378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties and microstructure of the (Fe, Ni)-Cu-(P, Si, B) melt-spun alloys.
    Ziewiec K; Bryła K; Błachowski A; Ruebenbauer K; Prusik K; Kac S; Kozieł T
    J Microsc; 2010 Mar; 237(3):232-6. PubMed ID: 20500371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HRTEM and TEM studies of amorphous structures in ZrNiTiCu base alloys obtained by rapid solidification or ball milling.
    Dutkiewicz J; Lityńska L; Maziarz W; Kocisko R; Molnarová M; Kovácová A
    Micron; 2009 Jan; 40(1):1-5. PubMed ID: 18614372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of structural parameters on magnetoresistive properties of CuFeNi melt spun ribbons.
    Cazottes S; Danoix F; Fnidiki A; Lemarchand D; Baricco M
    Ultramicroscopy; 2009 Apr; 109(5):625-30. PubMed ID: 19168287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure studies of ball-milled ZrCuAl, NiTiZrCu and melt-spun ZrNiTiCuAl alloys.
    Dutkiewicz J; Kubícek M; Pastrnák M; Maziarz W; Lejkowska M; Czeppe T; Morgiel J
    J Microsc; 2006 Sep; 223(Pt 3):268-71. PubMed ID: 17059547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moiré fringe analysis of small precipitates in melt-spun titanium-silicon alloys.
    Chumbley LS; Fraser HL
    J Electron Microsc Tech; 1990 Jan; 14(1):46-51. PubMed ID: 2299418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure Development and Properties of the Two-Component Melt-Spun Ni
    Ziewiec K; Wojciechowska M; Jankowska-Sumara I; Ziewiec A; Kąc S
    Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33916233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructure and mechanical properties of the NiNbZrTiAl amorphous alloys with 10 and 25 at.% Nb content.
    Czeppe T; Ochin P; Sypień A; Major L
    J Microsc; 2010 Mar; 237(3):320-4. PubMed ID: 20500388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of Cu addition on precipitation in Fe-Cr-Ni-Al-(Cu) model alloys.
    Höring S; Wanderka N; Banhart J
    Ultramicroscopy; 2009 Apr; 109(5):574-9. PubMed ID: 19153011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid immiscibility in an Fe-Cu alloy by molecular dynamics simulation.
    Fang T; Wang L; Peng CX; Qi Y
    J Phys Condens Matter; 2012 Dec; 24(50):505103. PubMed ID: 23164973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the composition of small features in atom probe: bcc Cu-rich precipitates in an Fe-rich matrix.
    Morley A; Sha G; Hirosawa S; Cerezo A; Smith GD
    Ultramicroscopy; 2009 Apr; 109(5):535-40. PubMed ID: 19028011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of disruption of Si-rich microstructure in engineering-lightweight Al-12.2at.%Si alloy melt above liquidus temperature.
    Dong X; Li P; Amirkhanlou S; Ji S; Popel PS; Dahlborg U; Calvo-Dahlborg M
    Sci Rep; 2020 Jul; 10(1):12979. PubMed ID: 32737402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precipitate crystal structure determination in melt spun Mg-1.5wt%Ca-6wt%Zn alloy.
    Jardim PM; Solórzano G; Sande JB
    Microsc Microanal; 2002 Dec; 8(6):487-96. PubMed ID: 12533209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the effect of cooling rate during melt spinning of FINEMET ribbons.
    Gheiratmand T; Hosseini HR; Davami P; Ostadhossein F; Song M; Gjoka M
    Nanoscale; 2013 Aug; 5(16):7520-7. PubMed ID: 23832313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure Evolution and Mechanical Properties of Melt Spun Skutterudite-based Thermoelectric Materials.
    Geng H; Zhang J; He T; Zhang L; Feng J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32098319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An assessment of the homogeneity of nano-crystalline Fe-Cu powders as studied by means of APT.
    Wille C; Al-Kassab T; Choi PP; Kwon YS; Kirchheim R
    Ultramicroscopy; 2009 Apr; 109(5):599-605. PubMed ID: 19064309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precipitation phase transformation in nanocrystalline Fe-Mo alloys.
    Sarkar S; Bansal C
    J Nanosci Nanotechnol; 2004; 4(1-2):203-8. PubMed ID: 15112568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An analytical electron microscopic investigation of precipitation in an Al-Cu-Zn-Mg-Ag alloy.
    Hasan F; Lorimer GW
    Microsc Res Tech; 1993 Mar; 24(4):359-66. PubMed ID: 8513176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Co-Doping on Magnetic Properties and Magnetocaloric Effect of Fe-Co-Zr-Cu-B Melt-Spun Ribbons.
    Yen NH; Ha NH; Thanh PT; Ngoc NH; Thanh TD; Dan NH
    J Nanosci Nanotechnol; 2021 Apr; 21(4):2552-2557. PubMed ID: 33500074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg₂Ni-type Alloy by Melt Spinning.
    Zhang YH; Li BW; Ren HP; Li X; Qi Y; Zhao DL
    Materials (Basel); 2011 Jan; 4(1):274-287. PubMed ID: 28879988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.