BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 20500530)

  • 21. Histone deacetylase MrHos3 negatively regulates the production of citrinin and pigments in Monascus ruber.
    Liu Q; Zheng Y; Liu B; Tang F; Shao Y
    J Basic Microbiol; 2023 Oct; 63(10):1128-1138. PubMed ID: 37236161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deleting the citrinin biosynthesis-related gene, ctnE, to greatly reduce citrinin production in Monascus aurantiacus Li AS3.4384.
    Ning ZQ; Cui H; Xu Y; Huang ZB; Tu Z; Li YP
    Int J Food Microbiol; 2017 Jan; 241():325-330. PubMed ID: 27838517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteome analysis reveals global response to deletion of mrflbA in Monascus ruber.
    Yan Q; Zhang Z; Yang Y; Chen F; Shao Y
    J Microbiol; 2018 Apr; 56(4):255-263. PubMed ID: 29492865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The ctnF gene is involved in citrinin and pigment synthesis in Monascus aurantiacus.
    Li Y; Wang N; Jiao X; Tu Z; He Q; Fu J
    J Basic Microbiol; 2020 Oct; 60(10):873-881. PubMed ID: 32812258
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of amino acids on red pigments and citrinin production in Monascus ruber.
    Hajjaj H; François JM; Goma G; Blanc PJ
    J Food Sci; 2012 Mar; 77(3):M156-9. PubMed ID: 22384962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inactivation of the global regulator LaeA in Monascus ruber results in a species-dependent response in sporulation and secondary metabolism.
    Liu Q; Cai L; Shao Y; Zhou Y; Li M; Wang X; Chen F
    Fungal Biol; 2016 Mar; 120(3):297-305. PubMed ID: 26895858
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus.
    Shimizu T; Kinoshita H; Ishihara S; Sakai K; Nagai S; Nihira T
    Appl Environ Microbiol; 2005 Jul; 71(7):3453-7. PubMed ID: 16000748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation and characterization of the citrinin biosynthetic gene cluster from Monascus aurantiacus.
    Li YP; Xu Y; Huang ZB
    Biotechnol Lett; 2012 Jan; 34(1):131-6. PubMed ID: 21956130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MptriA, an Acetyltransferase Gene Involved in Pigment Biosynthesis in M. purpureus YY-1.
    Liang B; Du X; Li P; Sun C; Wang S
    J Agric Food Chem; 2018 Apr; 66(16):4129-4138. PubMed ID: 29633617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cloning and sequence analysis of the full-length cDNA of a novel yp05 gene associated with citrinin production in Monascus aurantiacus.
    Xiong YH; Xu Y; Lai WH; Li YP; Wei H
    Biomed Environ Sci; 2007 Apr; 20(2):135-40. PubMed ID: 17624188
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ku70 and ku80 null mutants improve the gene targeting frequency in Monascus ruber M7.
    He Y; Liu Q; Shao Y; Chen F
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4965-76. PubMed ID: 23546425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Study on the production of citrinin by Monascus strains used in food industry].
    Li F; Xu G; Li Y; Chen Y
    Wei Sheng Yan Jiu; 2003 Nov; 32(6):602-5. PubMed ID: 14963915
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study on red fermented rice with high concentration of monacolin K and low concentration of citrinin.
    Chen F; Hu X
    Int J Food Microbiol; 2005 Sep; 103(3):331-7. PubMed ID: 15913821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of monascidin A from Monascus as citrinin.
    Blanc PJ; Laussac JP; Le Bars J; Le Bars P; Loret MO; Pareilleux A; Prome D; Prome JC; Santerre AL; Goma G
    Int J Food Microbiol; 1995 Oct; 27(2-3):201-13. PubMed ID: 8579990
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification and role analysis of an intermediate produced by a polygenic mutant of Monascus pigments cluster in Monascus ruber M7.
    Liu J; Zhou Y; Yi T; Zhao M; Xie N; Lei M; Liu Q; Shao Y; Chen F
    Appl Microbiol Biotechnol; 2016 Aug; 100(16):7037-49. PubMed ID: 26946170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptional regulation contributes more to Monascus pigments diversity in different strains than to DNA sequence variation.
    Guo X; Li Y; Zhang R; Yu J; Ma X; Chen M; Wang Y
    World J Microbiol Biotechnol; 2019 Aug; 35(9):138. PubMed ID: 31451937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative Proteomics Analysis by Sequential Window Acquisition of All Theoretical Mass Spectra-Mass Spectrometry Reveals Inhibition Mechanism of Pigments and Citrinin Production of
    Zhou B; Ma Y; Tian Y; Li J; Zhong H
    J Agric Food Chem; 2020 Jan; 68(3):808-817. PubMed ID: 31870144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Induction of mutation in Monascus purpureus isolated from Thai fermented food to develop low citrinin-producing strain for application in the red koji industry.
    Ketkaeo S; Sanpamongkolchai W; Morakul S; Baba S; Kobayashi G; Goto M
    J Gen Appl Microbiol; 2020 Aug; 66(3):163-168. PubMed ID: 31462600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulators of G-protein signalling in Aspergillus nidulans: RgsA downregulates stress response and stimulates asexual sporulation through attenuation of GanB (Galpha) signalling.
    Han KH; Seo JA; Yu JH
    Mol Microbiol; 2004 Jul; 53(2):529-40. PubMed ID: 15228532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biologically active components and nutraceuticals in the Monascus-fermented rice: a review.
    Lin YL; Wang TH; Lee MH; Su NW
    Appl Microbiol Biotechnol; 2008 Jan; 77(5):965-73. PubMed ID: 18038131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.