These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 20501714)
1. Computer-aided US diagnosis of breast lesions by using cell-based contour grouping. Cheng JZ; Chou YH; Huang CS; Chang YC; Tiu CM; Chen KW; Chen CM Radiology; 2010 Jun; 255(3):746-54. PubMed ID: 20501714 [TBL] [Abstract][Full Text] [Related]
2. Breast lesions on sonograms: computer-aided diagnosis with nearly setting-independent features and artificial neural networks. Chen CM; Chou YH; Han KC; Hung GS; Tiu CM; Chiou HJ; Chiou SY Radiology; 2003 Feb; 226(2):504-14. PubMed ID: 12563146 [TBL] [Abstract][Full Text] [Related]
3. Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy. Sahiner B; Chan HP; Roubidoux MA; Hadjiiski LM; Helvie MA; Paramagul C; Bailey J; Nees AV; Blane C Radiology; 2007 Mar; 242(3):716-24. PubMed ID: 17244717 [TBL] [Abstract][Full Text] [Related]
4. ACCOMP: Augmented cell competition algorithm for breast lesion demarcation in sonography. Cheng JZ; Chou YH; Huang CS; Chang YC; Tiu CM; Yeh FC; Chen KW; Tsou CH; Chen CM Med Phys; 2010 Dec; 37(12):6240-52. PubMed ID: 21302781 [TBL] [Abstract][Full Text] [Related]
5. Improving the Accuracy of Computer-aided Diagnosis for Breast MR Imaging by Differentiating between Mass and Nonmass Lesions. Gallego-Ortiz C; Martel AL Radiology; 2016 Mar; 278(3):679-88. PubMed ID: 26383229 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the effect of computer-aided classification of benign and malignant lesions on reader performance in automated three-dimensional breast ultrasound. Tan T; Platel B; Twellmann T; van Schie G; Mus R; Grivegnée A; Mann RM; Karssemeijer N Acad Radiol; 2013 Nov; 20(11):1381-8. PubMed ID: 24119350 [TBL] [Abstract][Full Text] [Related]
7. Classification of breast lesions with multimodality computer-aided diagnosis: observer study results on an independent clinical data set. Horsch K; Giger ML; Vyborny CJ; Lan L; Mendelson EB; Hendrick RE Radiology; 2006 Aug; 240(2):357-68. PubMed ID: 16864666 [TBL] [Abstract][Full Text] [Related]
8. Robustness of computerized lesion detection and classification scheme across different breast US platforms. Drukker K; Giger ML; Metz CE Radiology; 2005 Dec; 237(3):834-40. PubMed ID: 16304105 [TBL] [Abstract][Full Text] [Related]
9. Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features. Joo S; Yang YS; Moon WK; Kim HC IEEE Trans Med Imaging; 2004 Oct; 23(10):1292-300. PubMed ID: 15493696 [TBL] [Abstract][Full Text] [Related]
10. Computer-aided diagnosis using morphological features for classifying breast lesions on ultrasound. Huang YL; Chen DR; Jiang YR; Kuo SJ; Wu HK; Moon WK Ultrasound Obstet Gynecol; 2008 Sep; 32(4):565-72. PubMed ID: 18383556 [TBL] [Abstract][Full Text] [Related]
11. Solid breast masses: classification with computer-aided analysis of continuous US images obtained with probe compression. Moon WK; Chang RF; Chen CJ; Chen DR; Chen WL Radiology; 2005 Aug; 236(2):458-64. PubMed ID: 16040902 [TBL] [Abstract][Full Text] [Related]
12. Preliminary results of computer-aided diagnosis for magnetic resonance imaging of solid breast lesions. Yu Q; Huang K; Zhu Y; Chen X; Meng W Breast Cancer Res Treat; 2019 Sep; 177(2):419-426. PubMed ID: 31203487 [TBL] [Abstract][Full Text] [Related]
13. Using quantitative features extracted from T2-weighted MRI to improve breast MRI computer-aided diagnosis (CAD). Gallego-Ortiz C; Martel AL PLoS One; 2017; 12(11):e0187501. PubMed ID: 29112948 [TBL] [Abstract][Full Text] [Related]
14. Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors. Jesneck JL; Lo JY; Baker JA Radiology; 2007 Aug; 244(2):390-8. PubMed ID: 17562812 [TBL] [Abstract][Full Text] [Related]
16. Characterization of spatiotemporal changes for the classification of dynamic contrast-enhanced magnetic-resonance breast lesions. Milenković J; Hertl K; Košir A; Zibert J; Tasič JF Artif Intell Med; 2013 Jun; 58(2):101-14. PubMed ID: 23548472 [TBL] [Abstract][Full Text] [Related]
17. Breast elastography diagnosis based on dynamic sequence features. Chang SC; Lai YC; Chou YH; Chang RF Med Phys; 2013 Feb; 40(2):022905. PubMed ID: 23387776 [TBL] [Abstract][Full Text] [Related]
18. Automatic segmentation of breast lesions on ultrasound. Horsch K; Giger ML; Venta LA; Vyborny CJ Med Phys; 2001 Aug; 28(8):1652-9. PubMed ID: 11548934 [TBL] [Abstract][Full Text] [Related]
19. Computer-aided diagnosis for breast tumors by using vascularization of 3-D power Doppler ultrasound. Huang YL; Kuo SJ; Hsu CC; Tseng HS; Hsiao YH; Chen DR Ultrasound Med Biol; 2009 Oct; 35(10):1607-14. PubMed ID: 19647918 [TBL] [Abstract][Full Text] [Related]
20. Computer-aided diagnosis for the differentiation of malignant from benign thyroid nodules on ultrasonography. Lim KJ; Choi CS; Yoon DY; Chang SK; Kim KK; Han H; Kim SS; Lee J; Jeon YH Acad Radiol; 2008 Jul; 15(7):853-8. PubMed ID: 18572120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]