BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 20502442)

  • 1. MYC-microRNA-9-metastasis connection in breast cancer.
    Almeida MI; Reis RM; Calin GA
    Cell Res; 2010 Jun; 20(6):603-4. PubMed ID: 20502442
    [No Abstract]   [Full Text] [Related]  

  • 2. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis.
    Ma L; Young J; Prabhala H; Pan E; Mestdagh P; Muth D; Teruya-Feldstein J; Reinhardt F; Onder TT; Valastyan S; Westermann F; Speleman F; Vandesompele J; Weinberg RA
    Nat Cell Biol; 2010 Mar; 12(3):247-56. PubMed ID: 20173740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myc-modulated miR-9 makes more metastases.
    Khew-Goodall Y; Goodall GJ
    Nat Cell Biol; 2010 Mar; 12(3):209-11. PubMed ID: 20173743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estrogen regulation of vascular endothelial growth factor in breast cancer in vitro and in vivo: the role of estrogen receptor alpha and c-Myc.
    Dadiani M; Seger D; Kreizman T; Badikhi D; Margalit R; Eilam R; Degani H
    Endocr Relat Cancer; 2009 Sep; 16(3):819-34. PubMed ID: 19398483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. E-cadherin is a novel transcriptional target of the KLF6 tumor suppressor.
    DiFeo A; Narla G; Camacho-Vanegas O; Nishio H; Rose SL; Buller RE; Friedman SL; Walsh MJ; Martignetti JA
    Oncogene; 2006 Sep; 25(44):6026-31. PubMed ID: 16702959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased E-cadherin augments beta-catenin nuclear localization: studies in breast cancer cell lines.
    Yang SZ; Kohno N; Yokoyama A; Kondo K; Hamada H; Hiwada K
    Int J Oncol; 2001 Mar; 18(3):541-8. PubMed ID: 11179484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth factor-dependent regulation of survivin by c-myc in human breast cancer.
    Cosgrave N; Hill AD; Young LS
    J Mol Endocrinol; 2006 Dec; 37(3):377-90. PubMed ID: 17170079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of rho-associated kinase signaling prevents breast cancer metastasis to human bone.
    Liu S; Goldstein RH; Scepansky EM; Rosenblatt M
    Cancer Res; 2009 Nov; 69(22):8742-51. PubMed ID: 19887617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. beta-catenin siRNA regulation of apoptosis- and angiogenesis-related gene expression in hepatocellular carcinoma cells: potential uses for gene therapy.
    Wang XH; Sun X; Meng XW; Lv ZW; Du YJ; Zhu Y; Chen J; Kong DX; Jin SZ
    Oncol Rep; 2010 Oct; 24(4):1093-9. PubMed ID: 20811694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sox17, the canonical Wnt antagonist, is epigenetically inactivated by promoter methylation in human breast cancer.
    Fu DY; Wang ZM; Li-Chen ; Wang BL; Shen ZZ; Huang W; Shao ZM
    Breast Cancer Res Treat; 2010 Feb; 119(3):601-12. PubMed ID: 19301122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of microRNAs in breast cancer.
    Adams BD; Guttilla IK; White BA
    Semin Reprod Med; 2008 Nov; 26(6):522-36. PubMed ID: 18951334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of intestinal polyposis with reduced angiogenesis in ApcMin/+ mice due to decreases in c-Myc expression.
    Yekkala K; Baudino TA
    Mol Cancer Res; 2007 Dec; 5(12):1296-303. PubMed ID: 18171987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Getting at MYC through RAS.
    Bachireddy P; Bendapudi PK; Felsher DW
    Clin Cancer Res; 2005 Jun; 11(12):4278-81. PubMed ID: 15958607
    [No Abstract]   [Full Text] [Related]  

  • 14. Redundant expression of canonical Wnt ligands in human breast cancer cell lines.
    Benhaj K; Akcali KC; Ozturk M
    Oncol Rep; 2006 Mar; 15(3):701-7. PubMed ID: 16465433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic alterations of CDH1 and APC genes: relationship with activation of Wnt/beta-catenin pathway in invasive ductal carcinoma of breast.
    Prasad CP; Mirza S; Sharma G; Prashad R; DattaGupta S; Rath G; Ralhan R
    Life Sci; 2008 Aug; 83(9-10):318-25. PubMed ID: 18662704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells.
    Sampson VB; Rong NH; Han J; Yang Q; Aris V; Soteropoulos P; Petrelli NJ; Dunn SP; Krueger LJ
    Cancer Res; 2007 Oct; 67(20):9762-70. PubMed ID: 17942906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upregulation of macrophage migration inhibitory factor contributes to induced N-Myc expression by the activation of ERK signaling pathway and increased expression of interleukin-8 and VEGF in neuroblastoma.
    Ren Y; Chan HM; Li Z; Lin C; Nicholls J; Chen CF; Lee PY; Lui V; Bacher M; Tam PK
    Oncogene; 2004 May; 23(23):4146-54. PubMed ID: 15064733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfection of nm23-H1 increased expression of beta-Catenin, E-Cadherin and TIMP-1 and decreased the expression of MMP-2, CD44v6 and VEGF and inhibited the metastatic potential of human non-small cell lung cancer cell line L9981.
    Che G; Chen J; Liu L; Wang Y; Li L; Qin Y; Zhou Q
    Neoplasma; 2006; 53(6):530-7. PubMed ID: 17167724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of N-myc gene expression in human neuroblastoma.
    Iyer J; Korones DN; Ikegaki N; Kennett RH; Frantz CN
    Prog Clin Biol Res; 1991; 366():55-64. PubMed ID: 2068172
    [No Abstract]   [Full Text] [Related]  

  • 20. Monitoring metastatic behavior of human tumor cells in mice with species-specific polymerase chain reaction: elevated expression of angiogenesis and bone resorption stimulators by breast cancer in bone metastases.
    van der Pluijm G; Sijmons B; Vloedgraven H; Deckers M; Papapoulos S; Löwik C
    J Bone Miner Res; 2001 Jun; 16(6):1077-91. PubMed ID: 11393785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.