BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 20502639)

  • 21. Spontaneous olfactory receptor neuron activity determines follower cell response properties.
    Joseph J; Dunn FA; Stopfer M
    J Neurosci; 2012 Feb; 32(8):2900-10. PubMed ID: 22357872
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Homeostatic matching and nonlinear amplification at identified central synapses.
    Kazama H; Wilson RI
    Neuron; 2008 May; 58(3):401-13. PubMed ID: 18466750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Olfactory coding from the periphery to higher brain centers in the Drosophila brain.
    Seki Y; Dweck HKM; Rybak J; Wicher D; Sachse S; Hansson BS
    BMC Biol; 2017 Jun; 15(1):56. PubMed ID: 28666437
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lateral presynaptic inhibition mediates gain control in an olfactory circuit.
    Olsen SR; Wilson RI
    Nature; 2008 Apr; 452(7190):956-60. PubMed ID: 18344978
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Olfactory coding in the turbulent realm.
    Jacob V; Monsempès C; Rospars JP; Masson JB; Lucas P
    PLoS Comput Biol; 2017 Dec; 13(12):e1005870. PubMed ID: 29194457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Notch is required in adult Drosophila sensory neurons for morphological and functional plasticity of the olfactory circuit.
    Kidd S; Struhl G; Lieber T
    PLoS Genet; 2015 May; 11(5):e1005244. PubMed ID: 26011623
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glomerular maps without cellular redundancy at successive levels of the Drosophila larval olfactory circuit.
    Ramaekers A; Magnenat E; Marin EC; Gendre N; Jefferis GS; Luo L; Stocker RF
    Curr Biol; 2005 Jun; 15(11):982-92. PubMed ID: 15936268
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heterogeneity and convergence of olfactory first-order neurons account for the high speed and sensitivity of second-order neurons.
    Rospars JP; Grémiaux A; Jarriault D; Chaffiol A; Monsempes C; Deisig N; Anton S; Lucas P; Martinez D
    PLoS Comput Biol; 2014 Dec; 10(12):e1003975. PubMed ID: 25474026
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calcium-stores mediate adaptation in axon terminals of olfactory receptor neurons in Drosophila.
    Murmu MS; Stinnakre J; Réal E; Martin JR
    BMC Neurosci; 2011 Oct; 12():105. PubMed ID: 22024464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hierarchical axon targeting of Drosophila olfactory receptor neurons specified by the proneural transcription factors Atonal and Amos.
    Okumura M; Kato T; Miura M; Chihara T
    Genes Cells; 2016 Jan; 21(1):53-64. PubMed ID: 26663477
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two Parallel Olfactory Pathways for Processing General Odors in a Cockroach.
    Watanabe H; Nishino H; Mizunami M; Yokohari F
    Front Neural Circuits; 2017; 11():32. PubMed ID: 28529476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Olfactory processing and behavior downstream from highly selective receptor neurons.
    Schlief ML; Wilson RI
    Nat Neurosci; 2007 May; 10(5):623-30. PubMed ID: 17417635
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Olfactory information processing in Drosophila.
    Masse NY; Turner GC; Jefferis GS
    Curr Biol; 2009 Aug; 19(16):R700-13. PubMed ID: 19706282
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Short-Term Plasticity Regulates Both Divisive Normalization and Adaptive Responses in
    Liu Y; Li Q; Tang C; Qin S; Tu Y
    Front Comput Neurosci; 2021; 15():730431. PubMed ID: 34744674
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An Explant System for Time-Lapse Imaging Studies of Olfactory Circuit Assembly in Drosophila.
    Li T; Luo L
    J Vis Exp; 2021 Oct; (176):. PubMed ID: 34723938
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting expression to projection neurons that innervate specific mushroom body calyx and antennal lobe glomeruli in larval Drosophila.
    Masuda-Nakagawa LM; Awasaki T; Ito K; O'Kane CJ
    Gene Expr Patterns; 2010; 10(7-8):328-37. PubMed ID: 20659588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Interglomerular Inhibitory Networks on Olfactory Bulb Odor Representations.
    Zavitz D; Youngstrom IA; Borisyuk A; Wachowiak M
    J Neurosci; 2020 Jul; 40(31):5954-5969. PubMed ID: 32561671
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly.
    Ng M; Roorda RD; Lima SQ; Zemelman BV; Morcillo P; Miesenböck G
    Neuron; 2002 Oct; 36(3):463-74. PubMed ID: 12408848
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Response characteristics of an identified, sexually dimorphic olfactory glomerulus.
    King JR; Christensen TA; Hildebrand JG
    J Neurosci; 2000 Mar; 20(6):2391-9. PubMed ID: 10704513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temporally diverse firing patterns in olfactory receptor neurons underlie spatiotemporal neural codes for odors.
    Raman B; Joseph J; Tang J; Stopfer M
    J Neurosci; 2010 Feb; 30(6):1994-2006. PubMed ID: 20147528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.