These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 20502885)

  • 1. General motor representations are developed during action-observation.
    Hayes SJ; Elliott D; Bennett SJ
    Exp Brain Res; 2010 Jul; 204(2):199-206. PubMed ID: 20502885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociable contributions of motor-execution and action-observation to intramanual transfer.
    Hayes SJ; Elliott D; Andrew M; Roberts JW; Bennett SJ
    Exp Brain Res; 2012 Sep; 221(4):459-66. PubMed ID: 22821082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dyad training protocols and the development of a motor sequence representation.
    Panzer S; Haab T; Massing M; Pfeifer C; Shea CH
    Acta Psychol (Amst); 2019 Oct; 201():102947. PubMed ID: 31722259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for effector independent and dependent representations and their differential time course of acquisition during motor sequence learning.
    Bapi RS; Doya K; Harner AM
    Exp Brain Res; 2000 May; 132(2):149-62. PubMed ID: 10853941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of temporal and ordinal information during serial interception sequence learning.
    Gobel EW; Sanchez DJ; Reber PJ
    J Exp Psychol Learn Mem Cogn; 2011 Jul; 37(4):994-1000. PubMed ID: 21417511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effector-independent and effector-dependent sequence representations underlie general and specific perceptuomotor sequence learning.
    Andresen DR; Marsolek CJ
    J Mot Behav; 2012; 44(1):53-61. PubMed ID: 22242701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Action observation can prime visual object recognition.
    Helbig HB; Steinwender J; Graf M; Kiefer M
    Exp Brain Res; 2010 Jan; 200(3-4):251-8. PubMed ID: 19669130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-Task and Single-Task Practice Does Not Influence the Attentional Demands of Movement Sequence Representations.
    Pfeifer C; Harenz J; Shea CH; Panzer S
    J Mot Behav; 2024; 56(4):462-474. PubMed ID: 38484757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation learning versus physical practice leads to different consolidation outcomes in a movement timing task.
    Trempe M; Sabourin M; Rohbanfard H; Proteau L
    Exp Brain Res; 2011 Mar; 209(2):181-92. PubMed ID: 21279634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning of sequences of finger movements and timing: frontal lobe and action-oriented representation.
    Sakai K; Ramnani N; Passingham RE
    J Neurophysiol; 2002 Oct; 88(4):2035-46. PubMed ID: 12364526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor learning enhances perceptual judgment: a case for action-perception transfer.
    Hecht H; Vogt S; Prinz W
    Psychol Res; 2001; 65(1):3-14. PubMed ID: 11505611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observing human interaction with physical devices.
    Massen C
    Exp Brain Res; 2009 Oct; 199(1):49-58. PubMed ID: 19688203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual-motor interactions during action observation are shaped by cognitive context.
    Bortoletto M; Baker KS; Mattingley JB; Cunnington R
    J Cogn Neurosci; 2013 Nov; 25(11):1794-806. PubMed ID: 23767924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociable contributions of motor-execution and action-observation to intermanual transfer.
    Hayes SJ; Andrew M; Elliott D; Roberts JW; Bennett SJ
    Neurosci Lett; 2012 Jan; 506(2):346-50. PubMed ID: 22155050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Two sides of the same coin": constant motor learning speeds up, whereas variable motor learning stabilizes, speed-accuracy movements.
    Skurvydas A; Satas A; Valanciene D; Mamkus G; Mickeviciene D; Majauskiene D; Brazaitis M
    Eur J Appl Physiol; 2020 May; 120(5):1027-1039. PubMed ID: 32172292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor Performance, Mental Workload and Self-Efficacy Dynamics during Learning of Reaching Movements throughout Multiple Practice Sessions.
    Shuggi IM; Oh H; Wu H; Ayoub MJ; Moreno A; Shaw EP; Shewokis PA; Gentili RJ
    Neuroscience; 2019 Dec; 423():232-248. PubMed ID: 31325564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning through observation: a combination of expert and novice models favors learning.
    Rohbanfard H; Proteau L
    Exp Brain Res; 2011 Dec; 215(3-4):183-97. PubMed ID: 21986667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of an expert model induces a skilled movement coordination pattern in a single session of intermittent practice.
    Friedman J; Korman M
    Sci Rep; 2019 Mar; 9(1):4609. PubMed ID: 30872661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing the co-existence of two timing strategies for motor control in a unique task: The synchronisation spatial-tapping task.
    Dione M; Delevoye-Turrell Y
    Hum Mov Sci; 2015 Oct; 43():45-60. PubMed ID: 26203523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo motor learning of a bimanual control task over multiple days of practice.
    Haith AM; Yang CS; Pakpoor J; Kita K
    J Neurophysiol; 2022 Oct; 128(4):982-993. PubMed ID: 36129208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.