BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20503363)

  • 1. Neuropilin-1 interacts with the second branchial arch microenvironment to mediate chick neural crest cell dynamics.
    McLennan R; Kulesa PM
    Dev Dyn; 2010 Jun; 239(6):1664-73. PubMed ID: 20503363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo analysis reveals a critical role for neuropilin-1 in cranial neural crest cell migration in chick.
    McLennan R; Kulesa PM
    Dev Biol; 2007 Jan; 301(1):227-39. PubMed ID: 16959234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascular endothelial growth factor (VEGF) regulates cranial neural crest migration in vivo.
    McLennan R; Teddy JM; Kasemeier-Kulesa JC; Romine MH; Kulesa PM
    Dev Biol; 2010 Mar; 339(1):114-25. PubMed ID: 20036652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuropilins define distinct populations of neural crest cells.
    Lumb R; Wiszniak S; Kabbara S; Scherer M; Harvey N; Schwarz Q
    Neural Dev; 2014 Nov; 9():24. PubMed ID: 25363691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural crest invasion is a spatially-ordered progression into the head with higher cell proliferation at the migratory front as revealed by the photoactivatable protein, KikGR.
    Kulesa PM; Teddy JM; Stark DA; Smith SE; McLennan R
    Dev Biol; 2008 Apr; 316(2):275-87. PubMed ID: 18328476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of valproic acid on the formation and migration of cranial neural crest cells at the early developmental stages in rat embryos.
    Suzuki R; Imai H
    Congenit Anom (Kyoto); 2024 Mar; 64(2):47-60. PubMed ID: 38403785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuropilin 2/semaphorin 3F signaling is essential for cranial neural crest migration and trigeminal ganglion condensation.
    Gammill LS; Gonzalez C; Bronner-Fraser M
    Dev Neurobiol; 2007 Jan; 67(1):47-56. PubMed ID: 17443771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell reconstruction with spatial context of migrating neural crest cells and their microenvironments during vertebrate head and neck formation.
    Morrison JA; McLennan R; Teddy JM; Scott AR; Kasemeier-Kulesa JC; Gogol MM; Kulesa PM
    Development; 2021 Nov; 148(22):. PubMed ID: 35020873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome profiling reveals expression signatures of cranial neural crest cells arising from different axial levels.
    Lumb R; Buckberry S; Secker G; Lawrence D; Schwarz Q
    BMC Dev Biol; 2017 Apr; 17(1):5. PubMed ID: 28407732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal restriction of migratory and lineage potential in rhombomere 1 and 2 neural crest.
    McKeown SJ; Newgreen DF; Farlie PG
    Dev Biol; 2003 Mar; 255(1):62-76. PubMed ID: 12618134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semaphorin signaling guides cranial neural crest cell migration in zebrafish.
    Yu HH; Moens CB
    Dev Biol; 2005 Apr; 280(2):373-85. PubMed ID: 15882579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A role for chemokine signaling in neural crest cell migration and craniofacial development.
    Olesnicky Killian EC; Birkholz DA; Artinger KB
    Dev Biol; 2009 Sep; 333(1):161-72. PubMed ID: 19576198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuropilin 1 signaling guides neural crest cells to coordinate pathway choice with cell specification.
    Schwarz Q; Maden CH; Vieira JM; Ruhrberg C
    Proc Natl Acad Sci U S A; 2009 Apr; 106(15):6164-9. PubMed ID: 19325129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chick cranial neural crest cells use progressive polarity refinement, not contact inhibition of locomotion, to guide their migration.
    Genuth MA; Allen CDC; Mikawa T; Weiner OD
    Dev Biol; 2018 Dec; 444 Suppl 1(Suppl 1):S252-S261. PubMed ID: 29501457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repulsive and attractive semaphorins cooperate to direct the navigation of cardiac neural crest cells.
    Toyofuku T; Yoshida J; Sugimoto T; Yamamoto M; Makino N; Takamatsu H; Takegahara N; Suto F; Hori M; Fujisawa H; Kumanogoh A; Kikutani H
    Dev Biol; 2008 Sep; 321(1):251-62. PubMed ID: 18625214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tgfbeta3 regulation of chondrogenesis and osteogenesis in zebrafish is mediated through formation and survival of a subpopulation of the cranial neural crest.
    Cheah FS; Winkler C; Jabs EW; Chong SS
    Mech Dev; 2010; 127(7-8):329-44. PubMed ID: 20406684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semaphorin/neuropilin signaling influences the positioning of migratory neural crest cells within the hindbrain region of the chick.
    Osborne NJ; Begbie J; Chilton JK; Schmidt H; Eickholt BJ
    Dev Dyn; 2005 Apr; 232(4):939-49. PubMed ID: 15729704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of chick Ebf1-3 gene expression in the pharyngeal arches, cranial sensory ganglia and placodes.
    El-Magd MA; Saleh AA; Farrag F; Abd El-Aziz RM; Ali HA; Salama MF
    Cells Tissues Organs; 2014; 199(4):278-93. PubMed ID: 25613352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of the melanogenic potential of migrating neural crest-derived cells by the branchial arches.
    Jacobs-Cohen RJ; Wade PR; Gershon MD
    Anat Rec; 2002 Sep; 268(1):16-26. PubMed ID: 12209561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wnt3a regulates the development of cardiac neural crest cells by modulating expression of cysteine-rich intestinal protein 2 in rhombomere 6.
    Sun X; Zhang R; Lin X; Xu X
    Circ Res; 2008 Apr; 102(7):831-9. PubMed ID: 18292601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.