BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20503369)

  • 41. The contribution of specific cell subpopulations to submandibular salivary gland branching morphogenesis.
    Kwon HR; Larsen M
    Curr Opin Genet Dev; 2015 Jun; 32():47-54. PubMed ID: 25706196
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Canonical Wnt signaling regulates branching morphogenesis of submandibular gland by modulating levels of lama5.
    Gou L; Ren X; Ji P
    Int J Dev Biol; 2021; 65(7-8-9):497-504. PubMed ID: 33629734
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ectodysplasin receptor-mediated signaling is essential for embryonic submandibular salivary gland development.
    Jaskoll T; Zhou YM; Trump G; Melnick M
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Apr; 271(2):322-31. PubMed ID: 12629675
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Timp-1 is important for epithelial proliferation and branching morphogenesis during mouse mammary development.
    Fata JE; Leco KJ; Moorehead RA; Martin DC; Khokha R
    Dev Biol; 1999 Jul; 211(2):238-54. PubMed ID: 10395785
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Btbd7 regulates epithelial cell dynamics and branching morphogenesis.
    Onodera T; Sakai T; Hsu JC; Matsumoto K; Chiorini JA; Yamada KM
    Science; 2010 Jul; 329(5991):562-5. PubMed ID: 20671187
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two separate domains of laminin promote lung organogenesis by different mechanisms of action.
    Schuger L; Skubitz AP; de las Morenas A; Gilbride K
    Dev Biol; 1995 Jun; 169(2):520-32. PubMed ID: 7781896
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulation of cadherin junctions during mouse submandibular gland development.
    Menko AS; Zhang L; Schiano F; Kreidberg JA; Kukuruzinska MA
    Dev Dyn; 2002 Jul; 224(3):321-33. PubMed ID: 12112462
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mesenchymal control over elongating and branching morphogenesis in salivary gland development.
    Nogawa H; Mizuno T
    J Embryol Exp Morphol; 1981 Dec; 66():209-21. PubMed ID: 7338711
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Salivary gland morphogenesis: possible involvement of collagenase.
    Hayakawa T; Kishi J; Nakanishi Y
    Matrix Suppl; 1992; 1():344-51. PubMed ID: 1480059
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Asymmetrical growth, differential cell proliferation, and dynamic cell rearrangement underlie epithelial morphogenesis in mouse molar development.
    Obara N; Lesot H
    Cell Tissue Res; 2007 Dec; 330(3):461-73. PubMed ID: 17938968
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Force and deformation on branching rudiments: cleaving between hypotheses.
    Lubkin SR; Li Z
    Biomech Model Mechanobiol; 2002 Jun; 1(1):5-16. PubMed ID: 14586703
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanics of mesenchymal contribution to clefting force in branching morphogenesis.
    Wan X; Li Z; Lubkin SR
    Biomech Model Mechanobiol; 2008 Oct; 7(5):417-26. PubMed ID: 17901991
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MSCs feeder layers induce SMG self-organization and branching morphogenesis.
    Farahat M; Sathi GA; Hara ES; Taketa H; Kuboki T; Matsumoto T
    PLoS One; 2017; 12(4):e0176453. PubMed ID: 28448600
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Epithelial branching morphogenesis of salivary gland: exploration of new functional regulators.
    Sakai T
    J Med Invest; 2009; 56 Suppl():234-8. PubMed ID: 20224187
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Involvement of the T-box transcription factor Brachyury in early-stage embryonic mouse salivary gland.
    Hayashi K; Ikari T; Sugiyama G; Sugiura T; Ohyama Y; Kumamaru W; Shirasuna K; Mori Y
    Biochem Biophys Res Commun; 2016 Sep; 477(4):814-819. PubMed ID: 27369076
    [TBL] [Abstract][Full Text] [Related]  

  • 56. miR-200c regulates FGFR-dependent epithelial proliferation via Vldlr during submandibular gland branching morphogenesis.
    Rebustini IT; Hayashi T; Reynolds AD; Dillard ML; Carpenter EM; Hoffman MP
    Development; 2012 Jan; 139(1):191-202. PubMed ID: 22115756
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prediction of Growth Factor-Dependent Cleft Formation During Branching Morphogenesis Using A Dynamic Graph-Based Growth Model.
    Dhulekar N; Ray S; Yuan D; Baskaran A; Oztan B; Larsen M; Yener B
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(2):350-64. PubMed ID: 27070978
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydrogel-based biomimetic environment for in vitro modulation of branching morphogenesis.
    Miyajima H; Matsumoto T; Sakai T; Yamaguchi S; An SH; Abe M; Wakisaka S; Lee KY; Egusa H; Imazato S
    Biomaterials; 2011 Oct; 32(28):6754-63. PubMed ID: 21683999
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cryopreservation of Biologically Functional Submandibular Gland Rudiments from Fetal Mice.
    Adachi K; Ohno Y; Satoh K; Shitara A; Muramathu Y; Kashimata M
    In Vivo; 2020; 34(6):3271-3277. PubMed ID: 33144433
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of a mechanochemical checkpoint and negative feedback loop regulating branching morphogenesis.
    Daley WP; Gulfo KM; Sequeira SJ; Larsen M
    Dev Biol; 2009 Dec; 336(2):169-82. PubMed ID: 19804774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.