These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 20503398)

  • 21. Fibroblast growth factor 9 has oncogenic activity and is a downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas.
    Hendrix ND; Wu R; Kuick R; Schwartz DR; Fearon ER; Cho KR
    Cancer Res; 2006 Feb; 66(3):1354-62. PubMed ID: 16452189
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of a transplantable hormone-responsive human prostatic cancer xenograft TEN12 and its androgen-resistant sublines.
    Harper ME; Goddard L; Smith C; Nicholson RI
    Prostate; 2004 Jan; 58(1):13-22. PubMed ID: 14673948
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increased insulin-like growth factor I receptor expression and signaling are components of androgen-independent progression in a lineage-derived prostate cancer progression model.
    Krueckl SL; Sikes RA; Edlund NM; Bell RH; Hurtado-Coll A; Fazli L; Gleave ME; Cox ME
    Cancer Res; 2004 Dec; 64(23):8620-9. PubMed ID: 15574769
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hormonal regulation of beta2-adrenergic receptor level in prostate cancer.
    Ramberg H; Eide T; Krobert KA; Levy FO; Dizeyi N; Bjartell AS; Abrahamsson PA; Taskén KA
    Prostate; 2008 Jul; 68(10):1133-42. PubMed ID: 18454446
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Curcumin interrupts the interaction between the androgen receptor and Wnt/β-catenin signaling pathway in LNCaP prostate cancer cells.
    Choi HY; Lim JE; Hong JH
    Prostate Cancer Prostatic Dis; 2010 Dec; 13(4):343-9. PubMed ID: 20680030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression profiling of the mouse prostate after castration and hormone replacement: implication of H-cadherin in prostate tumorigenesis.
    Wang XD; Wang BE; Soriano R; Zha J; Zhang Z; Modrusan Z; Cunha GR; Gao WQ
    Differentiation; 2007 Mar; 75(3):219-34. PubMed ID: 17288544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Up-regulation of Wnt-1 and beta-catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications.
    Chen G; Shukeir N; Potti A; Sircar K; Aprikian A; Goltzman D; Rabbani SA
    Cancer; 2004 Sep; 101(6):1345-56. PubMed ID: 15316903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis.
    Rocchi P; Beraldi E; Ettinger S; Fazli L; Vessella RL; Nelson C; Gleave M
    Cancer Res; 2005 Dec; 65(23):11083-93. PubMed ID: 16322258
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Androgen receptor-dependent regulation of Bcl-xL expression: Implication in prostate cancer progression.
    Sun A; Tang J; Hong Y; Song J; Terranova PF; Thrasher JB; Svojanovsky S; Wang HG; Li B
    Prostate; 2008 Mar; 68(4):453-61. PubMed ID: 18196538
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells.
    Wang H; McKnight NC; Zhang T; Lu ML; Balk SP; Yuan X
    Cancer Res; 2007 Jan; 67(2):528-36. PubMed ID: 17234760
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Castration-induced up-regulation of insulin-like growth factor binding protein-5 potentiates insulin-like growth factor-I activity and accelerates progression to androgen independence in prostate cancer models.
    Miyake H; Pollak M; Gleave ME
    Cancer Res; 2000 Jun; 60(11):3058-64. PubMed ID: 10850457
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cyclooxygenase-2 promotes prostate cancer progression.
    Fujita H; Koshida K; Keller ET; Takahashi Y; Yoshimito T; Namiki M; Mizokami A
    Prostate; 2002 Nov; 53(3):232-40. PubMed ID: 12386924
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Id-1 expression induces androgen-independent prostate cancer cell growth through activation of epidermal growth factor receptor (EGF-R).
    Ling MT; Wang X; Lee DT; Tam PC; Tsao SW; Wong YC
    Carcinogenesis; 2004 Apr; 25(4):517-25. PubMed ID: 14688027
    [TBL] [Abstract][Full Text] [Related]  

  • 34. JunD mediates androgen-induced oxidative stress in androgen dependent LNCaP human prostate cancer cells.
    Mehraein-Ghomi F; Lee E; Church DR; Thompson TA; Basu HS; Wilding G
    Prostate; 2008 Jun; 68(9):924-34. PubMed ID: 18386285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The emergence of protocadherin-PC expression during the acquisition of apoptosis-resistance by prostate cancer cells.
    Chen MW; Vacherot F; De La Taille A; Gil-Diez-De-Medina S; Shen R; Friedman RA; Burchardt M; Chopin DK; Buttyan R
    Oncogene; 2002 Nov; 21(51):7861-71. PubMed ID: 12420223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of Frzb/secreted Frizzled-related protein 3, a secreted Wnt antagonist, in human androgen-independent prostate cancer PC-3 cells suppresses tumor growth and cellular invasiveness.
    Zi X; Guo Y; Simoneau AR; Hope C; Xie J; Holcombe RF; Hoang BH
    Cancer Res; 2005 Nov; 65(21):9762-70. PubMed ID: 16266997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Smad3 is overexpressed in advanced human prostate cancer and necessary for progressive growth of prostate cancer cells in nude mice.
    Lu S; Lee J; Revelo M; Wang X; Lu S; Dong Z
    Clin Cancer Res; 2007 Oct; 13(19):5692-702. PubMed ID: 17908958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Suppression of prostate tumor cell growth in vivo by WT1, the Wilms' tumor suppressor gene.
    Fraizer G; Leahy R; Priyadarshini S; Graham K; Delacerda J; Diaz M
    Int J Oncol; 2004 Mar; 24(3):461-71. PubMed ID: 14767530
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ERRgamma suppresses cell proliferation and tumor growth of androgen-sensitive and androgen-insensitive prostate cancer cells and its implication as a therapeutic target for prostate cancer.
    Yu S; Wang X; Ng CF; Chen S; Chan FL
    Cancer Res; 2007 May; 67(10):4904-14. PubMed ID: 17510420
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Melatonin and prostate cancer cell proliferation: interplay with castration, epidermal growth factor, and androgen sensitivity.
    Siu SW; Lau KW; Tam PC; Shiu SY
    Prostate; 2002 Jul; 52(2):106-22. PubMed ID: 12111702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.