These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 20503405)
1. Angiogenesis, lymphangiogenesis, growth pattern, and tumor emboli in inflammatory breast cancer: a review of the current knowledge. Vermeulen PB; van Golen KL; Dirix LY Cancer; 2010 Jun; 116(11 Suppl):2748-54. PubMed ID: 20503405 [TBL] [Abstract][Full Text] [Related]
2. Increased angiogenesis and lymphangiogenesis in inflammatory versus noninflammatory breast cancer by real-time reverse transcriptase-PCR gene expression quantification. Van der Auwera I; Van Laere SJ; Van den Eynden GG; Benoy I; van Dam P; Colpaert CG; Fox SB; Turley H; Harris AL; Van Marck EA; Vermeulen PB; Dirix LY Clin Cancer Res; 2004 Dec; 10(23):7965-71. PubMed ID: 15585631 [TBL] [Abstract][Full Text] [Related]
3. [Effects of VEGF-A/VEGF-C antisense oligodeoxynucleotide on angiogenesis, lymphangiogenesis, and tumor growth of breast cancer]. Chen JS; Zhang YJ; Hu SE; Zhang HQ Ai Zheng; 2007 Sep; 26(9):972-6. PubMed ID: 17927855 [TBL] [Abstract][Full Text] [Related]
4. Pathologic aspects of inflammatory breast cancer: part 2. Biologic insights into its aggressive phenotype. Gong Y Semin Oncol; 2008 Feb; 35(1):33-40. PubMed ID: 18308144 [TBL] [Abstract][Full Text] [Related]
5. Comparison of molecular determinants of angiogenesis and lymphangiogenesis in lymph node metastases and in primary tumours of patients with breast cancer. Van den Eynden GG; Van der Auwera I; Van Laere SJ; Trinh XB; Colpaert CG; van Dam P; Dirix LY; Vermeulen PB; Van Marck EA J Pathol; 2007 Sep; 213(1):56-64. PubMed ID: 17674348 [TBL] [Abstract][Full Text] [Related]
6. Lymphatic and angiogenic characteristics in breast cancer: morphometric analysis and prognostic implications. Mohammed RA; Ellis IO; Elsheikh S; Paish EC; Martin SG Breast Cancer Res Treat; 2009 Jan; 113(2):261-73. PubMed ID: 18293084 [TBL] [Abstract][Full Text] [Related]
7. Overexpression of macrophage migration inhibitory factor induces angiogenesis in human breast cancer. Xu X; Wang B; Ye C; Yao C; Lin Y; Huang X; Zhang Y; Wang S Cancer Lett; 2008 Mar; 261(2):147-57. PubMed ID: 18171602 [TBL] [Abstract][Full Text] [Related]
10. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Skobe M; Hawighorst T; Jackson DG; Prevo R; Janes L; Velasco P; Riccardi L; Alitalo K; Claffey K; Detmar M Nat Med; 2001 Feb; 7(2):192-8. PubMed ID: 11175850 [TBL] [Abstract][Full Text] [Related]
11. Sex-steroid regulation of vascular endothelial growth factor in breast cancer. Hyder SM Endocr Relat Cancer; 2006 Sep; 13(3):667-87. PubMed ID: 16954424 [TBL] [Abstract][Full Text] [Related]
12. VEGF-C expressing tumor-associated macrophages in lymph node positive breast cancer: impact on lymphangiogenesis and survival. Schoppmann SF; Fenzl A; Nagy K; Unger S; Bayer G; Geleff S; Gnant M; Horvat R; Jakesz R; Birner P Surgery; 2006 Jun; 139(6):839-46. PubMed ID: 16782443 [TBL] [Abstract][Full Text] [Related]
13. Increased sentinel lymph node lymphangiogenesis is associated with nonsentinel axillary lymph node involvement in breast cancer patients with a positive sentinel node. Van den Eynden GG; Vandenberghe MK; van Dam PJ; Colpaert CG; van Dam P; Dirix LY; Vermeulen PB; Van Marck EA Clin Cancer Res; 2007 Sep; 13(18 Pt 1):5391-7. PubMed ID: 17875768 [TBL] [Abstract][Full Text] [Related]
14. The relationship of human wound vascular endothelial growth factor (VEGF) after breast cancer surgery to circulating VEGF and angiogenesis. Hormbrey E; Han C; Roberts A; McGrouther DA; Harris AL Clin Cancer Res; 2003 Oct; 9(12):4332-9. PubMed ID: 14555503 [TBL] [Abstract][Full Text] [Related]
15. Serum vascular endothelial growth factor (VEGF) levels correlate with tumor VEGF and p53 overexpression in endocrine positive primary breast cancer. Iovino F; Ferraraccio F; Orditura M; Antoniol G; Morgillo F; Cascone T; Diadema MR; Aurilio G; Santabarbara G; Ruggiero R; Belli C; Irlandese E; Fasano M; Ciardiello F; Procaccini E; Lo Schiavo F; Catalano G; De Vita F Cancer Invest; 2008; 26(3):250-5. PubMed ID: 18317965 [TBL] [Abstract][Full Text] [Related]
16. The short form of the alternatively spliced flt-4 but not its ligand vascular endothelial growth factor C is related to lymph node metastasis in human breast cancers. Gunningham SP; Currie MJ; Han C; Robinson BA; Scott PA; Harris AL; Fox SB Clin Cancer Res; 2000 Nov; 6(11):4278-86. PubMed ID: 11106244 [TBL] [Abstract][Full Text] [Related]
17. Cooperative role of E-cadherin and sialyl-Lewis X/A-deficient MUC1 in the passive dissemination of tumor emboli in inflammatory breast carcinoma. Alpaugh ML; Tomlinson JS; Kasraeian S; Barsky SH Oncogene; 2002 May; 21(22):3631-43. PubMed ID: 12032865 [TBL] [Abstract][Full Text] [Related]
18. Role of endothelial progenitor cells in breast cancer angiogenesis: from fundamental research to clinical ramifications. Le Bourhis X; Romon R; Hondermarck H Breast Cancer Res Treat; 2010 Feb; 120(1):17-24. PubMed ID: 20033768 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Roberts N; Kloos B; Cassella M; Podgrabinska S; Persaud K; Wu Y; Pytowski B; Skobe M Cancer Res; 2006 Mar; 66(5):2650-7. PubMed ID: 16510584 [TBL] [Abstract][Full Text] [Related]
20. Lymphangiogenesis and angiogenesis in bladder cancer: prognostic implications and regulation by vascular endothelial growth factors-A, -C, and -D. Miyata Y; Kanda S; Ohba K; Nomata K; Hayashida Y; Eguchi J; Hayashi T; Kanetake H Clin Cancer Res; 2006 Feb; 12(3 Pt 1):800-6. PubMed ID: 16467091 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]