BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 20503430)

  • 1. Compartmentalization of the precheliceral neuroectoderm in the spider Cupiennius salei: development of the arcuate body, optic ganglia, and mushroom body.
    Doeffinger C; Hartenstein V; Stollewerk A
    J Comp Neurol; 2010 Jul; 518(13):2612-32. PubMed ID: 20503430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverged and conserved aspects of heart formation in a spider.
    Janssen R; Damen WG
    Evol Dev; 2008; 10(2):155-65. PubMed ID: 18315809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two visual systems in one brain: neuropils serving the principal eyes of the spider Cupiennius salei.
    Strausfeld NJ; Weltzien P; Barth FG
    J Comp Neurol; 1993 Feb; 328(1):63-75. PubMed ID: 7679123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary changes in sensory precursor formation in arthropods: embryonic development of leg sensilla in the spider Cupiennius salei.
    Stollewerk A; Seyfarth EA
    Dev Biol; 2008 Jan; 313(2):659-73. PubMed ID: 18054903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FMRFamide-like immunocytochemistry in the brain and subesophageal ganglion of Triatoma infestans (Insecta: Heteroptera). Coexpression with beta-pigment-dispersing hormone and small cardioactive peptide B.
    Settembrini BP; Villar MJ
    Cell Tissue Res; 2005 Aug; 321(2):299-310. PubMed ID: 15947966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurogenesis in the water flea Daphnia magna (Crustacea, Branchiopoda) suggests different mechanisms of neuroblast formation in insects and crustaceans.
    Ungerer P; Eriksson BJ; Stollewerk A
    Dev Biol; 2011 Sep; 357(1):42-52. PubMed ID: 21624360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of Drosophila Kruppel-homolog 1 in neuronal morphogenesis.
    Shi L; Lin S; Grinberg Y; Beck Y; Grozinger CM; Robinson GE; Lee T
    Dev Neurobiol; 2007 Oct; 67(12):1614-26. PubMed ID: 17562531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The synganglion of the jumping spider Marpissa muscosa (Arachnida: Salticidae): Insights from histology, immunohistochemistry and microCT analysis.
    Steinhoff PO; Sombke A; Liedtke J; Schneider JM; Harzsch S; Uhl G
    Arthropod Struct Dev; 2017 Mar; 46(2):156-170. PubMed ID: 27845202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The T-box genes H15 and optomotor-blind in the spiders Cupiennius salei, Tegenaria atrica and Achaearanea tepidariorum and the dorsoventral axis of arthropod appendages.
    Janssen R; Feitosa NM; Damen WG; Prpic NM
    Evol Dev; 2008; 10(2):143-54. PubMed ID: 18315808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two visual systems in one brain: neuropils serving the secondary eyes of the spider Cupiennius salei.
    Strausfeld NJ; Barth FG
    J Comp Neurol; 1993 Feb; 328(1):43-62. PubMed ID: 7679122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of Pax group III genes suggests a single-segmental periodicity for opisthosomal segment patterning in the spider Cupiennius salei.
    Schoppmeier M; Damen WG
    Evol Dev; 2005; 7(2):160-9. PubMed ID: 15733314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mushroom body volumes and visual interneurons in ants: comparison between sexes and castes.
    Ehmer B; Gronenberg W
    J Comp Neurol; 2004 Feb; 469(2):198-213. PubMed ID: 14694534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural, functional and developmental convergence of the insect mushroom bodies with higher brain centers of vertebrates.
    Farris SM
    Brain Behav Evol; 2008; 72(1):1-15. PubMed ID: 18560208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of Drosophila mushroom body neuroblasts and generation of divergent embryonic lineages.
    Kunz T; Kraft KF; Technau GM; Urbach R
    Development; 2012 Jul; 139(14):2510-22. PubMed ID: 22675205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conserved role of the Vsx genes supports a monophyletic origin for bilaterian visual systems.
    Erclik T; Hartenstein V; Lipshitz HD; McInnes RR
    Curr Biol; 2008 Sep; 18(17):1278-87. PubMed ID: 18723351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual inputs to the mushroom body calyces of the whirligig beetle Dineutus sublineatus: modality switching in an insect.
    Lin C; Strausfeld NJ
    J Comp Neurol; 2012 Aug; 520(12):2562–74. PubMed ID: 22684942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental organization of the mushroom bodies of Thermobia domestica (Zygentoma, Lepismatidae): insights into mushroom body evolution from a basal insect.
    Farris SM
    Evol Dev; 2005; 7(2):150-9. PubMed ID: 15733313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental expression of cell recognition molecules in the mushroom body and antennal lobe of the locust Locusta migratoria.
    Eickhoff R; Bicker G
    J Comp Neurol; 2012 Jun; 520(9):2021-40. PubMed ID: 22173776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Invertebrate D2 type dopamine receptor exhibits age-based plasticity of expression in the mushroom bodies of the honeybee brain.
    Humphries MA; Mustard JA; Hunter SJ; Mercer A; Ward V; Ebert PR
    J Neurobiol; 2003 Jun; 55(3):315-30. PubMed ID: 12717701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drosophila MAGE controls neural precursor proliferation in postembryonic neurogenesis.
    Nishimura I; Sakoda JY; Yoshikawa K
    Neuroscience; 2008 Jun; 154(2):572-81. PubMed ID: 18479827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.