These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 20503876)

  • 1. Thermal heterogeneity mediates the effects of pulsed subsidies across a landscape.
    Armstrong JB; Schindler DE; Omori KL; Ruff CP; Quinn TP
    Ecology; 2010 May; 91(5):1445-54. PubMed ID: 20503876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-associated population diversity in salmon confers benefits to mobile consumers.
    Ruff CP; Schindler DE; Armstrong JB; Bentley KT; Brooks GT; Holtgrieve GW; McGlauflin MT; Torgersen CE; Seeb JE
    Ecology; 2011 Nov; 92(11):2073-84. PubMed ID: 22164832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stream hydrology and a pulse subsidy shape patterns of fish foraging.
    Fitzgerald KA; Bellmore JR; Fellman JB; Cheng MLH; Delbecq CE; Falke JA
    J Anim Ecol; 2023 Dec; 92(12):2386-2398. PubMed ID: 37904340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stream network geomorphology mediates predicted vulnerability of anadromous fish habitat to hydrologic change in southeast Alaska.
    Sloat MR; Reeves GH; Christiansen KR
    Glob Chang Biol; 2017 Feb; 23(2):604-620. PubMed ID: 27611839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotype flexibility in wild fish: Dolly Varden regulate assimilative capacity to capitalize on annual pulsed subsidies.
    Armstrong JB; Bond MH
    J Anim Ecol; 2013 Sep; 82(5):966-75. PubMed ID: 23510107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Habitat saturation drives thresholds in stream subsidies.
    Moore JW; Schindler DE; Ruff CP
    Ecology; 2008 Feb; 89(2):306-12. PubMed ID: 18409419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diel horizontal migration in streams: juvenile fish exploit spatial heterogeneity in thermal and trophic resources.
    Armstrong JB; Schindler DE; Ruff CP; Brooks GT; Bentley KE; Torgersen CE
    Ecology; 2013 Sep; 94(9):2066-75. PubMed ID: 24279277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature, emergence phenology and consumption drive seasonal shifts in fish growth and production across riverscapes.
    Kaylor MJ; Justice C; Armstrong JB; Staton BA; Burns LA; Sedell E; White SM
    J Anim Ecol; 2021 Jul; 90(7):1727-1741. PubMed ID: 33792923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inter-Tributary Movements by Resident Salmonids across a Boreal Riverscape.
    Bentley KT; Schindler DE; Armstrong JB; Cline TJ; Brooks GT
    PLoS One; 2015; 10(9):e0136985. PubMed ID: 26379237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Juvenile coho salmon growth and health in streams across an urbanization gradient.
    Spanjer AR; Moran PW; Larsen KA; Wetzel LA; Hansen AG; Beauchamp DA
    Sci Total Environ; 2018 Jun; 625():1003-1012. PubMed ID: 29996397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking climate change projections for an Alaskan watershed to future coho salmon production.
    Leppi JC; Rinella DJ; Wilson RR; Loya WM
    Glob Chang Biol; 2014 Jun; 20(6):1808-20. PubMed ID: 24323577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of resource subsidy duration in a detritus-based stream ecosystem: A mesocosm experiment.
    Sato T; Ueda R; Takimoto G
    J Anim Ecol; 2021 May; 90(5):1142-1151. PubMed ID: 33560517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Warm, dry winters truncate timing and size distribution of seaward-migrating salmon across a large, regulated watershed.
    Munsch SH; Greene CM; Johnson RC; Satterthwaite WH; Imaki H; Brandes PL
    Ecol Appl; 2019 Jun; 29(4):e01880. PubMed ID: 30838703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A melting cryosphere constrains fish growth by synchronizing the seasonal phenology of river food webs.
    Bellmore JR; Fellman JB; Hood E; Dunkle MR; Edwards RT
    Glob Chang Biol; 2022 Aug; 28(16):4807-4818. PubMed ID: 35596718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Riding the crimson tide: mobile terrestrial consumers track phenological variation in spawning of an anadromous fish.
    Schindler DE; Armstrong JB; Bentley KT; Jankowski K; Lisi PJ; Payne LX
    Biol Lett; 2013 Jun; 9(3):20130048. PubMed ID: 23554279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resource subsidies between stream and terrestrial ecosystems under global change.
    Larsen S; Muehlbauer JD; Marti E
    Glob Chang Biol; 2016 Jul; 22(7):2489-504. PubMed ID: 26649817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aquatic food-web dynamics following incorporation of nutrients derived from Atlantic anadromous fishes.
    Samways KM; Soto DX; Cunjak RA
    J Fish Biol; 2018 Feb; 92(2):399-419. PubMed ID: 29235101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying thermal exposure for migratory riverine species: Phenology of Chinook salmon populations predicts thermal stress.
    FitzGerald AM; John SN; Apgar TM; Mantua NJ; Martin BT
    Glob Chang Biol; 2021 Feb; 27(3):536-549. PubMed ID: 33216441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long time horizon for adaptive management to reveal predation effects in a salmon fishery.
    Walsworth TE; Schindler DE
    Ecol Appl; 2016 Dec; 26(8):2693-2705. PubMed ID: 27875003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A test of the effects of timing of a pulsed resource subsidy on stream ecosystems.
    Sato T; El-Sabaawi RW; Campbell K; Ohta T; Richardson JS
    J Anim Ecol; 2016 Sep; 85(5):1136-46. PubMed ID: 26972564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.