BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 20504637)

  • 1. Central gabaergic mechanisms as targets for melatonin activity in brain.
    Rosenstein RE; Cardinali DP
    Neurochem Int; 1990; 17(3):373-9. PubMed ID: 20504637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in gamma-aminobutyric acid high affinity binding to cerebral cortex membranes after pinealectomy or melatonin administration to rats.
    Acuña Castroviejo D; Rosenstein RE; Romeo HE; Cardinali DP
    Neuroendocrinology; 1986; 43(1):24-31. PubMed ID: 3713987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenous melatonin provides an effective circadian message to both the suprachiasmatic nuclei and the pars tuberalis of the rat.
    Agez L; Laurent V; Guerrero HY; Pévet P; Masson-Pévet M; Gauer F
    J Pineal Res; 2009 Jan; 46(1):95-105. PubMed ID: 19090912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GABA release from suprachiasmatic nucleus terminals is necessary for the light-induced inhibition of nocturnal melatonin release in the rat.
    Kalsbeek A; Cutrera RA; Van Heerikhuize JJ; Van Der Vliet J; Buijs RM
    Neuroscience; 1999; 91(2):453-61. PubMed ID: 10366002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in serotonin level and turnover in discrete hypothalamic nuclei after pinealectomy and melatonin administration to rats.
    Miguez JM; Martin FJ; Lema M; Aldegunde M
    Neurochem Int; 1996 Dec; 29(6):651-8. PubMed ID: 9113133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABA as a presumptive paracrine signal in the pineal gland. Evidence on an intrapineal GABAergic system.
    Rosenstein RE; Chuluyan HE; Díaz MC; Cardinali DP
    Brain Res Bull; 1990 Aug; 25(2):339-44. PubMed ID: 2171722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Annual reproductive rhythms in mammals: mechanisms of light synchronization.
    Hastings MH; Herbert J; Martensz ND; Roberts AC
    Ann N Y Acad Sci; 1985; 453():182-204. PubMed ID: 2934016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melatonin, the pineal gland, and circadian rhythms.
    Cassone VM; Warren WS; Brooks DS; Lu J
    J Biol Rhythms; 1993; 8 Suppl():S73-81. PubMed ID: 8274765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benzodiazepines decrease norepinephrine release from rat pineal nerves by acting on peripheral type binding sites.
    Lowenstein PR; González Solveyra C; Keller Sarmiento MI; Cardinali DP
    Acta Physiol Pharmacol Latinoam; 1985; 35(4):441-9. PubMed ID: 2940804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melatonin: both master clock output and internal time-giver in the circadian clocks network.
    Pevet P; Challet E
    J Physiol Paris; 2011 Dec; 105(4-6):170-82. PubMed ID: 21914478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gonadal-GABAergic interaction is an important factor involved in photoperiod-induced 2-[125I] iodomelatonin binding changes in the Japanese quail brain.
    Canonaco M; Tavolaro R; Facciolo RM; Artero C; Franzoni MF
    Brain Res Bull; 1994; 34(5):425-35. PubMed ID: 8082036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative distribution of 2[125I]iodomelatonin binding in the brains of diurnal birds: outgroup analysis with turtles.
    Cassone VM; Brooks DS; Kelm TA
    Brain Behav Evol; 1995; 45(5):241-56. PubMed ID: 7620873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mammalian melatonin receptors: molecular biology and signal transduction.
    von Gall C; Stehle JH; Weaver DR
    Cell Tissue Res; 2002 Jul; 309(1):151-62. PubMed ID: 12111545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-Dependent Effect of Melatonin on Glutamic Acid Decarboxylase Activity and CI Influx in Rat Hypothalamus.
    Rosenstein RE; Estévez AG; Cardinali DP
    J Neuroendocrinol; 1989 Dec; 1(6):443-7. PubMed ID: 19210415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo evidence for a controlled offset of melatonin synthesis at dawn by the suprachiasmatic nucleus in the rat.
    Perreau-Lenz S; Kalsbeek A; Van Der Vliet J; Pévet P; Buijs RM
    Neuroscience; 2005; 130(3):797-803. PubMed ID: 15590161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melatonin feedback on clock genes: a theory involving the proteasome.
    Vriend J; Reiter RJ
    J Pineal Res; 2015 Jan; 58(1):1-11. PubMed ID: 25369242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian rhythmicity in AVP secretion and GABAergic synaptic transmission in the rat suprachiasmatic nucleus.
    Kretschmannova K; Svobodova I; Balik A; Mazna P; Zemkova H
    Ann N Y Acad Sci; 2005 Jun; 1048():103-15. PubMed ID: 16154925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The distribution of melatonin binding sites in neuroendocrine tissues of the ewe.
    Bittman EL; Weaver DR
    Biol Reprod; 1990 Dec; 43(6):986-93. PubMed ID: 2291931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhythmic melatonin secretion does not correlate with the expression of arylalkylamine N-acetyltransferase, inducible cyclic amp early repressor, period1 or cryptochrome1 mRNA in the sheep pineal.
    Johnston JD; Bashforth R; Diack A; Andersson H; Lincoln GA; Hazlerigg DG
    Neuroscience; 2004; 124(4):789-95. PubMed ID: 15026119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pituitary adenylate cyclase-activating polypeptide (PACAP) is involved in melatonin release via the specific receptor PACAP-r1, but not in the circadian oscillator, in chick pineal cells.
    Nakahara K; Abe Y; Murakami T; Shiota K; Murakami N
    Brain Res; 2002 Jun; 939(1-2):19-25. PubMed ID: 12020847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.