BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 20504643)

  • 1. Sensitive and rapid quantitation of oxygen reactive species formation in rat synaptosomes.
    Lebel CP; Bondy SC
    Neurochem Int; 1990; 17(3):435-40. PubMed ID: 20504643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity.
    Ali SF; LeBel CP; Bondy SC
    Neurotoxicology; 1992; 13(3):637-48. PubMed ID: 1475065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for free radical formation during the oxidation of 2'-7'-dichlorofluorescin to the fluorescent dye 2'-7'-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements.
    Rota C; Chignell CF; Mason RP
    Free Radic Biol Med; 1999 Oct; 27(7-8):873-81. PubMed ID: 10515592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the probes 2',7'-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation.
    Myhre O; Andersen JM; Aarnes H; Fonnum F
    Biochem Pharmacol; 2003 May; 65(10):1575-82. PubMed ID: 12754093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photosensitized oxidation of 2',7'-dichlorofluorescin: singlet oxygen does not contribute to the formation of fluorescent oxidation product 2',7'-dichlorofluorescein.
    Bilski P; Belanger AG; Chignell CF
    Free Radic Biol Med; 2002 Oct; 33(7):938-46. PubMed ID: 12361804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xanthine oxidase-mediated intracellular oxidative stress in response to cerulein in rat pancreatic acinar cells.
    Suzuki H; Suematsu M; Miura S; Asako H; Kurose I; Ishii H; Houzawa S; Tsuchiya M
    Pancreas; 1993 Jul; 8(4):465-70. PubMed ID: 8361967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation.
    Bass DA; Parce JW; Dechatelet LR; Szejda P; Seeds MC; Thomas M
    J Immunol; 1983 Apr; 130(4):1910-7. PubMed ID: 6833755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorophotometric quantitation of oxidative stress in the retina in vivo.
    Takanashi T; Ogura Y; Taguchi H; Hashizoe M; Honda Y
    Invest Ophthalmol Vis Sci; 1997 Dec; 38(13):2721-8. PubMed ID: 9418724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of aliphatic, naphthenic, and aromatic hydrocarbons on production of reactive oxygen species and reactive nitrogen species in rat brain synaptosome fraction: the involvement of calcium, nitric oxide synthase, mitochondria, and phospholipase A.
    Myhre O; Fonnum F
    Biochem Pharmacol; 2001 Jul; 62(1):119-28. PubMed ID: 11377403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochrome C is a potent catalyst of dichlorofluorescin oxidation: implications for the role of reactive oxygen species in apoptosis.
    Burkitt MJ; Wardman P
    Biochem Biophys Res Commun; 2001 Mar; 282(1):329-33. PubMed ID: 11264011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring intracellular nitric oxide formation by dichlorofluorescin in neuronal cells.
    Gunasekar PG; Kanthasamy AG; Borowitz JL; Isom GE
    J Neurosci Methods; 1995; 61(1-2):15-21. PubMed ID: 8618413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells.
    Carter WO; Narayanan PK; Robinson JP
    J Leukoc Biol; 1994 Feb; 55(2):253-8. PubMed ID: 8301222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A photochemical study of cells loaded with 2',7'-dichlorofluorescin: implications for the detection of reactive oxygen species generated during UVA irradiation.
    Chignell CF; Sik RH
    Free Radic Biol Med; 2003 Apr; 34(8):1029-34. PubMed ID: 12684087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of elevated reactive oxygen species level in cultured rat hepatocytes treated with aflatoxin B1.
    Shen HM; Shi CY; Shen Y; Ong CN
    Free Radic Biol Med; 1996; 21(2):139-46. PubMed ID: 8818628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation of the dichlorofluorescein assay for detection of radiation-induced oxidative stress in cultured cells.
    Wan XS; Zhou Z; Kennedy AR
    Radiat Res; 2003 Dec; 160(6):622-30. PubMed ID: 14640785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What does the commonly used DCF test for oxidative stress really show?
    Karlsson M; Kurz T; Brunk UT; Nilsson SE; Frennesson CI
    Biochem J; 2010 May; 428(2):183-90. PubMed ID: 20331437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethylbenzene induces microsomal oxygen free radical generation: antibody-directed characterization of the responsible cytochrome P450 enzymes.
    Serron SC; Dwivedi N; Backes WL
    Toxicol Appl Pharmacol; 2000 May; 164(3):305-11. PubMed ID: 10799341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Method to overcome photoreaction, a serious drawback to the use of dichlorofluorescin in evaluation of reactive oxygen species.
    Afzal M; Matsugo S; Sasai M; Xu B; Aoyama K; Takeuchi T
    Biochem Biophys Res Commun; 2003 May; 304(4):619-24. PubMed ID: 12727198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow cytometric analysis of the granulocyte respiratory burst: a comparison study of fluorescent probes.
    Vowells SJ; Sekhsaria S; Malech HL; Shalit M; Fleisher TA
    J Immunol Methods; 1995 Jan; 178(1):89-97. PubMed ID: 7829869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-reactive protein selectively enhances the intracellular generation of reactive oxygen products by IgG-stimulated monocytes and neutrophils.
    Zeller JM; Sullivan BL
    J Leukoc Biol; 1992 Oct; 52(4):449-55. PubMed ID: 1328445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.