These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 20504666)

  • 41. Regulation of intrasynaptosomal free calcium concentrations: studies with the fluorescent indicator, fluo-3.
    Smith TL
    Neurochem Int; 1990; 16(1):89-94. PubMed ID: 20504544
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Barium evokes glutamate release from rat brain synaptosomes by membrane depolarization: involvement of K+, Na+, and Ca2+ channels.
    Sihra TS; Piomelli D; Nichols RA
    J Neurochem; 1993 Oct; 61(4):1220-30. PubMed ID: 7690845
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The protective effect of vitamin E, idebenone and reduced glutathione on free radical mediated injury in rat brain synaptosomes.
    Cardoso SM; Pereira C; Oliveira CR
    Biochem Biophys Res Commun; 1998 May; 246(3):703-10. PubMed ID: 9618276
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tanshinone IIA, a constituent of Danshen, inhibits the release of glutamate in rat cerebrocortical nerve terminals.
    Lin TY; Lu CW; Huang SK; Wang SJ
    J Ethnopharmacol; 2013 May; 147(2):488-96. PubMed ID: 23542145
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxidative stress affects synaptosomal gamma-aminobutyric acid and glutamate transport in diabetic rats: the role of insulin.
    Duarte AI; Santos MS; Seiça R; Oliveira CR
    Diabetes; 2004 Aug; 53(8):2110-6. PubMed ID: 15277393
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Conditions restricting depolarization-dependent calcium influx in synaptosomes reveal a graded response of P96 dephosphorylation and a transient dephosphorylation of P65.
    Gómez-Puertas P; Martínez-Serrano A; Blanco P; Satrústegui J; Bogónez E
    J Neurochem; 1991 Jun; 56(6):2039-47. PubMed ID: 2027011
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Calcium-activated potassium channels in isolated presynaptic nerve terminals from rat brain.
    Bartschat DK; Blaustein MP
    J Physiol; 1985 Apr; 361():441-57. PubMed ID: 2580982
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Association between alcohol-induced oxidative stress and membrane properties in synaptosomes: A protective role of vitamin E.
    Reddy VD; Padmavathi P; Bulle S; Hebbani AV; Marthadu SB; Venugopalacharyulu NC; Maturu P; Varadacharyulu NC
    Neurotoxicol Teratol; 2017 Sep; 63():60-65. PubMed ID: 28778836
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Block of 45Ca uptake into synaptosomes by methylmercury: Ca++- and Na+-dependence.
    Shafer TJ; Atchison WD
    J Pharmacol Exp Ther; 1989 Feb; 248(2):696-702. PubMed ID: 2918475
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sigma-1 receptors do not regulate calcium influx through voltage-dependent calcium channels in mouse brain synaptosomes.
    González LG; Sánchez-Fernández C; Cobos EJ; Baeyens JM; del Pozo E
    Eur J Pharmacol; 2012 Feb; 677(1-3):102-6. PubMed ID: 22227337
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Estimation of cytosolic free calcium within synaptosomes with fluorescene indicator Fura-2].
    Chen L; Yan Y; He Z
    Hunan Yi Ke Da Xue Xue Bao; 1998; 23(4):375-8. PubMed ID: 11189398
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The NADH oxidase activity of the plasma membrane of synaptosomes is a major source of superoxide anion and is inhibited by peroxynitrite.
    Martín-Romero FJ; Gutiérrez-Martín Y; Henao F; Gutiérrez-Merino C
    J Neurochem; 2002 Aug; 82(3):604-14. PubMed ID: 12153484
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Altered calcium homeostasis and cell injury in silica-exposed alveolar macrophages.
    Rojanasakul Y; Wang L; Malanga CJ; Ma JY; Banks DE; Ma JK
    J Cell Physiol; 1993 Feb; 154(2):310-6. PubMed ID: 8381126
    [TBL] [Abstract][Full Text] [Related]  

  • 54. HTDP-2, a new synthetic compound, inhibits glutamate release through reduction of voltage-dependent Ca²⁺ influx in rat cerebral cortex nerve terminals.
    Lin TY; Lu CW; Huang SK; Chou SS; Kuo YC; Chou SH; Tzeng WF; Leu CY; Huang RF; Liew YF; Wang SJ
    Pharmacology; 2011; 88(1-2):26-32. PubMed ID: 21720189
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sensitive and rapid quantitation of oxygen reactive species formation in rat synaptosomes.
    Lebel CP; Bondy SC
    Neurochem Int; 1990; 17(3):435-40. PubMed ID: 20504643
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of methylmercury on neurotransmitter release from rat brain synaptosomes.
    Minnema DJ; Cooper GP; Greenland RD
    Toxicol Appl Pharmacol; 1989 Jul; 99(3):510-21. PubMed ID: 2568702
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanisms underlying the riluzole inhibition of glutamate release from rat cerebral cortex nerve terminals (synaptosomes).
    Wang SJ; Wang KY; Wang WC
    Neuroscience; 2004; 125(1):191-201. PubMed ID: 15051158
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Free radical production induced by methamphetamine in rat striatal synaptosomes.
    Pubill D; Chipana C; Camins A; Pallàs M; Camarasa J; Escubedo E
    Toxicol Appl Pharmacol; 2005 Apr; 204(1):57-68. PubMed ID: 15781294
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Estimation of free calcium level within synaptosomes by using fura-2 and the effect of calcium channel agonist and antagonist].
    Gao H; Feng YP
    Yao Xue Xue Bao; 1993; 28(6):404-9. PubMed ID: 8249597
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Studies on the mechanism by which tryptophan efflux from isolated synaptosomes is stimulated by depolarization.
    Collard KJ; Wilkinson LS; Lewis DJ
    Br J Pharmacol; 1988 Feb; 93(2):341-8. PubMed ID: 2965950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.