These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 20504730)
1. Fluorescence studies of endothelin-1. Pelton JT Neurochem Int; 1991; 18(4):485-9. PubMed ID: 20504730 [TBL] [Abstract][Full Text] [Related]
2. Physical studies of tyrosine and tryptophan residues in mammalian A1 heterogeneous nuclear ribonucleoprotein. Support for a segmented structure. Casas-Finet JR; Karpel RL; Maki AH; Kumar A; Wilson SH J Mol Biol; 1991 Sep; 221(2):693-709. PubMed ID: 1656054 [TBL] [Abstract][Full Text] [Related]
3. Fluorescence and excitation Escherichia coli RecA protein spectra analyzed separately for tyrosine and tryptophan residues. Isaev-Ivanov VV; Kozlov MG; Baitin DM; Masui R; Kuramitsu S; Lanzov VA Arch Biochem Biophys; 2000 Apr; 376(1):124-40. PubMed ID: 10729198 [TBL] [Abstract][Full Text] [Related]
4. Fluorescence study on the solution conformation to dynorphin in comparison of enkephalin. Schiller PW Int J Pept Protein Res; 1983 Mar; 21(3):307-12. PubMed ID: 6853032 [TBL] [Abstract][Full Text] [Related]
5. Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: orientation of peptide and protein binding. Yuan T; Weljie AM; Vogel HJ Biochemistry; 1998 Mar; 37(9):3187-95. PubMed ID: 9485473 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and solution conformation of [Trp1, Val5]-angiotensin II. Schiller PW Can J Biochem; 1977 Jan; 55(1):75-82. PubMed ID: 837247 [TBL] [Abstract][Full Text] [Related]
7. Intramolecular quenching of tryptophan phosphorescence in short peptides and proteins. Gonnelli M; Strambini GB Photochem Photobiol; 2005; 81(3):614-22. PubMed ID: 15689181 [TBL] [Abstract][Full Text] [Related]
8. Self-assembled complexes of oligopeptides and metalloporphyrins: measurements of the reorganization and electronic interaction energies for photoinduced electron-transfer reactions. Aoudia M; Guliaev AB; Leontis NB; Rodgers MA Biophys Chem; 2000 Jan; 83(2):121-40. PubMed ID: 10672418 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence of aromatic amino acids in a pyridoxal phosphate enzyme: aspartate aminotransferase. Arrio-Dupont M Eur J Biochem; 1978 Nov; 91(2):369-78. PubMed ID: 729576 [TBL] [Abstract][Full Text] [Related]
10. Quenching of the tyrosyl and tryptophyl fluorescence of subtilisins Carlsberg and Novo by iodide. Brown MF; Omar S; Raubach RA; Schleich T Biochemistry; 1977 Mar; 16(5):987-92. PubMed ID: 843526 [TBL] [Abstract][Full Text] [Related]
11. Determination of the average end-to-end distance of two angiotensin II analogs by resonance energy transfer. Schiller PW Int J Pept Protein Res; 1980 Oct; 16(4):259-66. PubMed ID: 7461906 [TBL] [Abstract][Full Text] [Related]
12. Study of adrenocorticotropic hormone conformation by evaluation of intramolecular resonance energy transfer in N -dansyllysine 21 -ACTH-(1-24)-tetrakosipeptide. Schiller PW Proc Natl Acad Sci U S A; 1972 Apr; 69(4):975-9. PubMed ID: 4337249 [TBL] [Abstract][Full Text] [Related]
13. Determination of the intramolecular tyrosine-tryptophan distance in a 7-peptide related to the C-terminal sequence of cholecystokinin. Schiller PW; Natarajan S; Bodanszky M Int J Pept Protein Res; 1978 Sep; 12(3):139-42. PubMed ID: 700920 [TBL] [Abstract][Full Text] [Related]
14. Tryptophan octyl ester in detergent micelles of dodecylmaltoside: fluorescence properties and quenching by brominated detergent analogs. de Foresta B; Gallay J; Sopkova J; Champeil P; Vincent M Biophys J; 1999 Dec; 77(6):3071-84. PubMed ID: 10585929 [TBL] [Abstract][Full Text] [Related]
15. Fluorescence energy transfer studies on the active site of papain. Henes JB; Briggs MS; Sligar SG; Fruton JS Proc Natl Acad Sci U S A; 1980 Feb; 77(2):940-3. PubMed ID: 6928689 [TBL] [Abstract][Full Text] [Related]
16. Solution conformational dynamics of the C-terminal residues in endothelin-1 and some analogues: a time-resolved fluorescence study. Cowley DJ; Pelton JT Int J Pept Protein Res; 1995 Jul; 46(1):56-64. PubMed ID: 7558597 [TBL] [Abstract][Full Text] [Related]
17. Product binding to the alpha-carboxyl subsite results in a conformational change at the active site of O-acetylserine sulfhydrylase-A: evidence from fluorescence spectroscopy. McClure GD; Cook PF Biochemistry; 1994 Feb; 33(7):1674-83. PubMed ID: 8110769 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of the highly efficient quenching of tryptophan fluorescence in human gammaD-crystallin. Chen J; Flaugh SL; Callis PR; King J Biochemistry; 2006 Sep; 45(38):11552-63. PubMed ID: 16981715 [TBL] [Abstract][Full Text] [Related]
19. Contribution of separate tryptophan residues to intrinsic fluorescence of actin. Analysis of 3D structure. Kuznetsova IM; Yakusheva TA; Turoverov KK FEBS Lett; 1999 Jun; 452(3):205-10. PubMed ID: 10386591 [TBL] [Abstract][Full Text] [Related]
20. Temperature dependence of the phosphorescence quantum yield of various alpha-lactalbumins and of hen egg-white lysozyme. Smith CA; Maki AH Biophys J; 1993 Jun; 64(6):1885-95. PubMed ID: 8369413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]