These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20504954)

  • 21. Force-dependent hopping rates of RNA hairpins can be estimated from accurate measurement of the folding landscapes.
    Hyeon C; Morrison G; Thirumalai D
    Proc Natl Acad Sci U S A; 2008 Jul; 105(28):9604-9. PubMed ID: 18621721
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative tests of a reconstitution model for RNA folding thermodynamics and kinetics.
    Bisaria N; Greenfeld M; Limouse C; Mabuchi H; Herschlag D
    Proc Natl Acad Sci U S A; 2017 Sep; 114(37):E7688-E7696. PubMed ID: 28839094
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Free energy landscape and multiple folding pathways of an H-type RNA pseudoknot.
    Bian Y; Zhang J; Wang J; Wang J; Wang W
    PLoS One; 2015; 10(6):e0129089. PubMed ID: 26030098
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The computer simulation of RNA folding pathways using a genetic algorithm.
    Gultyaev AP; van Batenburg FH; Pleij CW
    J Mol Biol; 1995 Jun; 250(1):37-51. PubMed ID: 7541471
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Folding of human telomerase RNA pseudoknot using ion-jump and temperature-quench simulations.
    Biyun S; Cho SS; Thirumalai D
    J Am Chem Soc; 2011 Dec; 133(50):20634-43. PubMed ID: 22082261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beyond kinetic traps in RNA folding.
    Treiber DK; Williamson JR
    Curr Opin Struct Biol; 2001 Jun; 11(3):309-14. PubMed ID: 11406379
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assembly mechanisms of RNA pseudoknots are determined by the stabilities of constituent secondary structures.
    Cho SS; Pincus DL; Thirumalai D
    Proc Natl Acad Sci U S A; 2009 Oct; 106(41):17349-54. PubMed ID: 19805055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RNA multi-structure landscapes. A study based on temperature dependent partition functions.
    Bonhoeffer S; McCaskill JS; Stadler PF; Schuster P
    Eur Biophys J; 1993; 22(1):13-24. PubMed ID: 7685689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel Heat-Promoted Folding Dynamics of the yybP-ykoY Manganese Riboswitch: Kinetic and Thermodynamic Studies at the Single-Molecule Level.
    Sung HL; Nesbitt DJ
    J Phys Chem B; 2019 Jul; 123(26):5412-5422. PubMed ID: 31244093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting Cotranscriptional Folding Kinetics For Riboswitch.
    Sun TT; Zhao C; Chen SJ
    J Phys Chem B; 2018 Aug; 122(30):7484-7496. PubMed ID: 29985608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RNA folding at elementary step resolution.
    Flamm C; Fontana W; Hofacker IL; Schuster P
    RNA; 2000 Mar; 6(3):325-38. PubMed ID: 10744018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structures, kinetics, thermodynamics, and biological functions of RNA hairpins.
    Bevilacqua PC; Blose JM
    Annu Rev Phys Chem; 2008; 59():79-103. PubMed ID: 17937599
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Basin Hopping Graph: a computational framework to characterize RNA folding landscapes.
    KucharĂ­k M; Hofacker IL; Stadler PF; Qin J
    Bioinformatics; 2014 Jul; 30(14):2009-17. PubMed ID: 24648041
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermodynamic and kinetic folding of riboswitches.
    Badelt S; Hammer S; Flamm C; Hofacker IL
    Methods Enzymol; 2015; 553():193-213. PubMed ID: 25726466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNA folding: structure prediction, folding kinetics and ion electrostatics.
    Tan Z; Zhang W; Shi Y; Wang F
    Adv Exp Med Biol; 2015; 827():143-83. PubMed ID: 25387965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A kinetic model of RNA folding.
    Mironov AA; Lebedev VF
    Biosystems; 1993; 30(1-3):49-56. PubMed ID: 7690611
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Landscapes: complex optimization problems and biopolymer structures.
    Schuster P; Stadler PF
    Comput Chem; 1994 Sep; 18(3):295-324. PubMed ID: 7524995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Does water play a structural role in the folding of small nucleic acids?
    Sorin EJ; Rhee YM; Pande VS
    Biophys J; 2005 Apr; 88(4):2516-24. PubMed ID: 15681648
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNA folding: conformational statistics, folding kinetics, and ion electrostatics.
    Chen SJ
    Annu Rev Biophys; 2008; 37():197-214. PubMed ID: 18573079
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tests of Kramers' Theory at the Single-Molecule Level: Evidence for Folding of an Isolated RNA Tertiary Interaction at the Viscous Speed Limit.
    Dupuis NF; Holmstrom ED; Nesbitt DJ
    J Phys Chem B; 2018 Sep; 122(38):8796-8804. PubMed ID: 30078323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.