These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 20505004)

  • 1. On safari to Random Jungle: a fast implementation of Random Forests for high-dimensional data.
    Schwarz DF; König IR; Ziegler A
    Bioinformatics; 2010 Jul; 26(14):1752-8. PubMed ID: 20505004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies.
    Yang C; He Z; Wan X; Yang Q; Xue H; Yu W
    Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximal conditional chi-square importance in random forests.
    Wang M; Chen X; Zhang H
    Bioinformatics; 2010 Mar; 26(6):831-7. PubMed ID: 20130032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Informative Bayesian Model Selection: a method for identifying interactions in genome-wide data.
    Aflakparast M; Masoudi-Nejad A; Bozorgmehr JH; Visweswaran S
    Mol Biosyst; 2014 Oct; 10(10):2654-62. PubMed ID: 25070634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PRESTO: rapid calculation of order statistic distributions and multiple-testing adjusted P-values via permutation for one and two-stage genetic association studies.
    Browning BL
    BMC Bioinformatics; 2008 Jul; 9():309. PubMed ID: 18620604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genome-wide association study of Alzheimer's disease using random forests and enrichment analysis.
    Zou L; Huang Q; Li A; Wang M
    Sci China Life Sci; 2012 Jul; 55(7):618-25. PubMed ID: 22864836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An application of Random Forests to a genome-wide association dataset: methodological considerations & new findings.
    Goldstein BA; Hubbard AE; Cutler A; Barcellos LF
    BMC Genet; 2010 Jun; 11():49. PubMed ID: 20546594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Were genome-wide linkage studies a waste of time? Exploiting candidate regions within genome-wide association studies.
    Yoo YJ; Bull SB; Paterson AD; Waggott D; Sun L;
    Genet Epidemiol; 2010 Feb; 34(2):107-18. PubMed ID: 19626703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the performance of genome-wide association studies for predicting disease risk.
    Patron J; Serra-Cayuela A; Han B; Li C; Wishart DS
    PLoS One; 2019; 14(12):e0220215. PubMed ID: 31805043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative methods for H1 simulations in genome-wide association studies.
    Perduca V; Sinoquet C; Mourad R; Nuel G
    Hum Hered; 2012; 73(2):95-104. PubMed ID: 22472690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. METAINTER: meta-analysis of multiple regression models in genome-wide association studies.
    Vaitsiakhovich T; Drichel D; Herold C; Lacour A; Becker T
    Bioinformatics; 2015 Jan; 31(2):151-7. PubMed ID: 25252781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GSA-SNP: a general approach for gene set analysis of polymorphisms.
    Nam D; Kim J; Kim SY; Kim S
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W749-54. PubMed ID: 20501604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Unsolved Link of Genetic Markers and Crohn's Disease Progression: A North American Cohort Experience.
    O'Donnell S; Borowski K; Espin-Garcia O; Milgrom R; Kabakchiev B; Stempak J; Panikkath D; Eksteen B; Xu W; Steinhart AH; Kaplan GG; McGovern DPB; Silverberg MS
    Inflamm Bowel Dis; 2019 Aug; 25(9):1541-1549. PubMed ID: 30801121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GWAR: robust analysis and meta-analysis of genome-wide association studies.
    Dimou NL; Tsirigos KD; Elofsson A; Bagos PG
    Bioinformatics; 2017 May; 33(10):1521-1527. PubMed ID: 28108451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RAPID detection of gene-gene interactions in genome-wide association studies.
    Brinza D; Schultz M; Tesler G; Bafna V
    Bioinformatics; 2010 Nov; 26(22):2856-62. PubMed ID: 20871107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathway Analysis Incorporating Protein-Protein Interaction Networks Identified Candidate Pathways for the Seven Common Diseases.
    Lin PL; Yu YW; Chung RH
    PLoS One; 2016; 11(9):e0162910. PubMed ID: 27622767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SECA: SNP effect concordance analysis using genome-wide association summary results.
    Nyholt DR
    Bioinformatics; 2014 Jul; 30(14):2086-8. PubMed ID: 24695403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations.
    Boulesteix AL; Bender A; Lorenzo Bermejo J; Strobl C
    Brief Bioinform; 2012 May; 13(3):292-304. PubMed ID: 21908865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of genetic profiles of Crohn's disease: a focus on the ATG16L1 gene.
    Grant SF; Baldassano RN; Hakonarson H
    Expert Rev Mol Diagn; 2008 Mar; 8(2):199-207. PubMed ID: 18366306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.